Meng-Nan Liu, Jin-Hua Liu, Lu-Yao Wang, Fang Yin, Gang Zheng, Ru Li, Jun Zhang, Yun-Ze Long
{"title":"Strategies for Improving Contact-Electro-Catalytic Efficiency: A Review.","authors":"Meng-Nan Liu, Jin-Hua Liu, Lu-Yao Wang, Fang Yin, Gang Zheng, Ru Li, Jun Zhang, Yun-Ze Long","doi":"10.3390/nano15050386","DOIUrl":null,"url":null,"abstract":"<p><p>Contact-electro-catalysis (CEC) has emerged as a promising catalytic methodology, integrating principles from solid-liquid triboelectric nanogenerators (SL-TENGs) into catalysis. Unlike conventional approaches, CEC harnesses various forms of mechanical energy, including wind and water, along with other renewable sources, enabling reactions under natural conditions without reliance on specific energy inputs like light or electricity. This review presents the basic principles of CEC and discusses its applications, including the degradation of organic molecules, synthesis of chemical substances, and reduction of metals. Furthermore, it explores methods to improve the catalytic efficiency of CEC by optimizing catalytic conditions, the structure of catalyst materials, and the start-up mode. The concluding section offers insights into future prospects and potential applications of CEC, highlighting its role in advancing sustainable catalytic technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050386","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Contact-electro-catalysis (CEC) has emerged as a promising catalytic methodology, integrating principles from solid-liquid triboelectric nanogenerators (SL-TENGs) into catalysis. Unlike conventional approaches, CEC harnesses various forms of mechanical energy, including wind and water, along with other renewable sources, enabling reactions under natural conditions without reliance on specific energy inputs like light or electricity. This review presents the basic principles of CEC and discusses its applications, including the degradation of organic molecules, synthesis of chemical substances, and reduction of metals. Furthermore, it explores methods to improve the catalytic efficiency of CEC by optimizing catalytic conditions, the structure of catalyst materials, and the start-up mode. The concluding section offers insights into future prospects and potential applications of CEC, highlighting its role in advancing sustainable catalytic technologies.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.