Juxiang Pu, Yongqing Gong, Menghao Yang, Mali Zhao
{"title":"Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction.","authors":"Juxiang Pu, Yongqing Gong, Menghao Yang, Mali Zhao","doi":"10.3390/nano15050407","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy barrier on the surface; however, the preparation of novel carbon nanostructures via the Wurtz reaction has been scarcely reported. Here, we report the successful synthesis of ethyl-bridged binaphthyl molecular chains on Ag(111) at room temperature via the Wurtz reaction. However, this structure was not obtained through low-temperature deposition followed by annealing even above room temperature. High-resolution scanning tunneling microscopy combined with density functional theory calculations reveal that the rate-limiting step of C-C homocoupling exhibits a low-energy barrier, facilitating the room-temperature synthesis of carbon nanochain structures. Moreover, the stereochemical configuration of adsorbed molecules hinders the activation of the C-X (X = Br) bond away from the metal surface and, therefore, critically influences the reaction pathways and final products. This work advances the understanding of surface-mediated reactions involving precursor molecules with stereochemical structures. Moreover, it provides an optimized approach for synthesizing novel carbon nanostructures under mild conditions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050407","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy barrier on the surface; however, the preparation of novel carbon nanostructures via the Wurtz reaction has been scarcely reported. Here, we report the successful synthesis of ethyl-bridged binaphthyl molecular chains on Ag(111) at room temperature via the Wurtz reaction. However, this structure was not obtained through low-temperature deposition followed by annealing even above room temperature. High-resolution scanning tunneling microscopy combined with density functional theory calculations reveal that the rate-limiting step of C-C homocoupling exhibits a low-energy barrier, facilitating the room-temperature synthesis of carbon nanochain structures. Moreover, the stereochemical configuration of adsorbed molecules hinders the activation of the C-X (X = Br) bond away from the metal surface and, therefore, critically influences the reaction pathways and final products. This work advances the understanding of surface-mediated reactions involving precursor molecules with stereochemical structures. Moreover, it provides an optimized approach for synthesizing novel carbon nanostructures under mild conditions.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.