{"title":"Dual Defect-Engineered BiVO<sub>4</sub> Nanosheets for Efficient Peroxymonosulfate Activation.","authors":"Jiabao Wu, Meiyu Xu, Zhenzi Li, Mingxia Li, Wei Zhou","doi":"10.3390/nano15050373","DOIUrl":null,"url":null,"abstract":"<p><p>Defects and heteroatom doping are two refined microstructural factors that significantly affect the performance of photocatalytic materials. Coupling defect and doping engineering is a powerful approach for designing efficient photocatalysts. In this research, we successfully construct dual defect-engineered BiVO<sub>4</sub> nanosheets (BVO-N-OV) by introducing N doping and oxygen vacancies through ammonium oxalate-assisted thermal treatment of BiVO<sub>4</sub> nanosheets. Due to the combined enhancement of band structure and surface properties from N doping and oxygen vacancies, the obtained BVO-N-OV nanosheets demonstrate improved visible light absorption, effective charge transfer efficiency, and increased active sites. As a result, the constructed BVO-N-OV/PMS system demonstrates significantly enhanced ciprofloxacin (CIP) removal performance under visible light illumination. The highest rate constant for CIP degradation over BVO-N-OV/PMS system is 7.9, 1.9, and 6.6 times greater than pristine BiVO<sub>4</sub> (BVO), oxygen vacancy-enriched BiVO<sub>4</sub> (BVO-OV), and N-doped BiVO<sub>4</sub> (BVO-N), respectively. Even in a broad pH range (3.0-11.0) with various anions, the BVO-N-OV/PMS/Vis system still demonstrates stable and excellent CIP removal performance. This study seeks to provide valuable insights into the interaction between defect and doping engineering in photocatalytic activation of PMS, thereby proposing new strategies for designing effective photocatalyst/PMS systems for wastewater treatment.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050373","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Defects and heteroatom doping are two refined microstructural factors that significantly affect the performance of photocatalytic materials. Coupling defect and doping engineering is a powerful approach for designing efficient photocatalysts. In this research, we successfully construct dual defect-engineered BiVO4 nanosheets (BVO-N-OV) by introducing N doping and oxygen vacancies through ammonium oxalate-assisted thermal treatment of BiVO4 nanosheets. Due to the combined enhancement of band structure and surface properties from N doping and oxygen vacancies, the obtained BVO-N-OV nanosheets demonstrate improved visible light absorption, effective charge transfer efficiency, and increased active sites. As a result, the constructed BVO-N-OV/PMS system demonstrates significantly enhanced ciprofloxacin (CIP) removal performance under visible light illumination. The highest rate constant for CIP degradation over BVO-N-OV/PMS system is 7.9, 1.9, and 6.6 times greater than pristine BiVO4 (BVO), oxygen vacancy-enriched BiVO4 (BVO-OV), and N-doped BiVO4 (BVO-N), respectively. Even in a broad pH range (3.0-11.0) with various anions, the BVO-N-OV/PMS/Vis system still demonstrates stable and excellent CIP removal performance. This study seeks to provide valuable insights into the interaction between defect and doping engineering in photocatalytic activation of PMS, thereby proposing new strategies for designing effective photocatalyst/PMS systems for wastewater treatment.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.