{"title":"Micro-3D sculptured metastructures with deep trenches for sub-10 μm resolution.","authors":"Anıl Çağrı Atak, Emre Ünal, Hilmi Volkan Demir","doi":"10.1038/s41378-025-00888-5","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing allows for the construction of complex structures. However, 3D-printing vertical structures with a high aspect ratio remains a pending challenge, especially when a high lateral resolution is required. Here, to address this challenge, we propose and demonstrate micro-3D sculptured metastructures with deep trenches of 1:4 (width:height) aspect ratio for sub-10 µm resolution. Our construction relies on two-photon polymerization for a 3D-pattern with its trenches, followed by electroplating of a thick metal film and its dry etching to remove the seed layer. To test the proposed fabrication process, we built up three-dimensional RF metastructures showcasing the depth effect as the third dimension. Using the numerical solutions, we custom-tailored these metastructure resonators to fall within a specific resonance frequency range of 4-6 GHz while undertaking comparative analyses regarding overall footprint, quality factor, and resonance frequency shift as a function of their cross-sectional aspect ratio. The proposed process flow is shown to miniaturize metal footprint and tune the resonance frequency of these thick 3D-metastructures while increasing their quality factor. These experimental findings indicate that this method of producing trenches via 3D-printing provides rich opportunities to implement high-aspect-ratio, complex structures.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"47"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00888-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) printing allows for the construction of complex structures. However, 3D-printing vertical structures with a high aspect ratio remains a pending challenge, especially when a high lateral resolution is required. Here, to address this challenge, we propose and demonstrate micro-3D sculptured metastructures with deep trenches of 1:4 (width:height) aspect ratio for sub-10 µm resolution. Our construction relies on two-photon polymerization for a 3D-pattern with its trenches, followed by electroplating of a thick metal film and its dry etching to remove the seed layer. To test the proposed fabrication process, we built up three-dimensional RF metastructures showcasing the depth effect as the third dimension. Using the numerical solutions, we custom-tailored these metastructure resonators to fall within a specific resonance frequency range of 4-6 GHz while undertaking comparative analyses regarding overall footprint, quality factor, and resonance frequency shift as a function of their cross-sectional aspect ratio. The proposed process flow is shown to miniaturize metal footprint and tune the resonance frequency of these thick 3D-metastructures while increasing their quality factor. These experimental findings indicate that this method of producing trenches via 3D-printing provides rich opportunities to implement high-aspect-ratio, complex structures.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.