{"title":"Design of a Low-Infrared-Emission and Wideband-Microwave-Absorption Lightweight Metasurface.","authors":"Liping Liu, Zongsheng Chen, Zhigang Li, Yajing Chang, Pengfei Li, Xun Liu, Xuesong Deng, Yunsong Feng","doi":"10.3390/nano15050399","DOIUrl":null,"url":null,"abstract":"<p><p>The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared-radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure is a combination of a radar-absorbing layer (RAL) and a low-infrared-emission layer (IRSL), with an overall thickness of about 1.7 mm. It consists of three layers, a top-layer patch-type ITO frequency-selective surface, an intermediate layer of a four-fold rotationally symmetric ITO patterned structure, and a bottom reflective surface. The layers are separated by PMI. Simulation results show that the structure achieves over 90% broadband absorption in the microwave band from 7 to 58 GHz and low emissivity of 0.36 in the infrared band. In addition, due to the four-fold rotationally symmetric design, the structure also exhibits polarization insensitivity and excellent angular stability. Therefore, the designed structure possesses ultra-broadband radar absorption performance, low infrared emissivity, and polarization-insensitive properties at a thin thickness, and has a promising application in the field of multi-band-compatible stealth technology.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050399","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared-radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure is a combination of a radar-absorbing layer (RAL) and a low-infrared-emission layer (IRSL), with an overall thickness of about 1.7 mm. It consists of three layers, a top-layer patch-type ITO frequency-selective surface, an intermediate layer of a four-fold rotationally symmetric ITO patterned structure, and a bottom reflective surface. The layers are separated by PMI. Simulation results show that the structure achieves over 90% broadband absorption in the microwave band from 7 to 58 GHz and low emissivity of 0.36 in the infrared band. In addition, due to the four-fold rotationally symmetric design, the structure also exhibits polarization insensitivity and excellent angular stability. Therefore, the designed structure possesses ultra-broadband radar absorption performance, low infrared emissivity, and polarization-insensitive properties at a thin thickness, and has a promising application in the field of multi-band-compatible stealth technology.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.