Jad F Assaf, Hady Yazbeck, Dan Z Reinstein, Timothy J Archer, Roland Assaf, Diego de Ortueta, Juan Arbelaez, Maria Clara Arbelaez, Shady T Awwad
{"title":"Automated Detection of Keratorefractive Laser Surgeries on Optical Coherence Tomography Using Deep Learning.","authors":"Jad F Assaf, Hady Yazbeck, Dan Z Reinstein, Timothy J Archer, Roland Assaf, Diego de Ortueta, Juan Arbelaez, Maria Clara Arbelaez, Shady T Awwad","doi":"10.3928/1081597X-20250204-04","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To report a deep learning neural network on anterior segment optical coherence tomography (AS-OCT) for automated detection of different keratorefractive laser surgeries-including laser in situ keratomileusis with femtosecond microkeratome (femto-LASIK), LASIK with mechanical microkeratome, photorefractive keratectomy (PRK), keratorefractive lenticule extraction (KLEx), and non-operated eyes-while also distinguishing between myopic and hyperopic treatments within these procedures.</p><p><strong>Methods: </strong>A total of 14,948 eye scans from 2,278 eyes of 1,166 patients were used to develop a deep learning neural network algorithm with an 80/10/10 patient distribution for training, validation, and testing phases, respectively. The algorithm was evaluated for its accuracy, F1 scores, area under precision-recall curve (AUPRC), and area under receiver operating characteristic curve (AUROC).</p><p><strong>Results: </strong>On the test dataset, the neural network was able to detect the different surgical classes with an accuracy of 96%, a weighted-average F1 score of 96%, and a macro-average F1 score of 96%. The neural network was further able to detect hyperopic and myopic subclasses within each surgical class, with an accuracy of 90%, weighted-average F1 score of 90%, and macro-average F1 score of 83%.</p><p><strong>Conclusions: </strong>Neural networks can accurately classify a patient's keratorefractive laser history from AS-OCT scans, which may support treatment planning, intraocular lens calculations, and ectasia assessment, particularly in cases where electronic health records are incomplete. This represents a step toward transforming OCT from a diagnostic to a more comprehensive screening tool in refractive clinics. <b>[<i>J Refract Surg</i>. 2025;41(3):e248-e256.]</b>.</p>","PeriodicalId":16951,"journal":{"name":"Journal of refractive surgery","volume":"41 3","pages":"e248-e256"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of refractive surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3928/1081597X-20250204-04","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To report a deep learning neural network on anterior segment optical coherence tomography (AS-OCT) for automated detection of different keratorefractive laser surgeries-including laser in situ keratomileusis with femtosecond microkeratome (femto-LASIK), LASIK with mechanical microkeratome, photorefractive keratectomy (PRK), keratorefractive lenticule extraction (KLEx), and non-operated eyes-while also distinguishing between myopic and hyperopic treatments within these procedures.
Methods: A total of 14,948 eye scans from 2,278 eyes of 1,166 patients were used to develop a deep learning neural network algorithm with an 80/10/10 patient distribution for training, validation, and testing phases, respectively. The algorithm was evaluated for its accuracy, F1 scores, area under precision-recall curve (AUPRC), and area under receiver operating characteristic curve (AUROC).
Results: On the test dataset, the neural network was able to detect the different surgical classes with an accuracy of 96%, a weighted-average F1 score of 96%, and a macro-average F1 score of 96%. The neural network was further able to detect hyperopic and myopic subclasses within each surgical class, with an accuracy of 90%, weighted-average F1 score of 90%, and macro-average F1 score of 83%.
Conclusions: Neural networks can accurately classify a patient's keratorefractive laser history from AS-OCT scans, which may support treatment planning, intraocular lens calculations, and ectasia assessment, particularly in cases where electronic health records are incomplete. This represents a step toward transforming OCT from a diagnostic to a more comprehensive screening tool in refractive clinics. [J Refract Surg. 2025;41(3):e248-e256.].
期刊介绍:
The Journal of Refractive Surgery, the official journal of the International Society of Refractive Surgery, a partner of the American Academy of Ophthalmology, has been a monthly peer-reviewed forum for original research, review, and evaluation of refractive and lens-based surgical procedures for more than 30 years. Practical, clinically valuable articles provide readers with the most up-to-date information regarding advances in the field of refractive surgery. Begin to explore the Journal and all of its great benefits such as:
• Columns including “Translational Science,” “Surgical Techniques,” and “Biomechanics”
• Supplemental videos and materials available for many articles
• Access to current articles, as well as several years of archived content
• Articles posted online just 2 months after acceptance.