{"title":"Enhanced personalized prediction of baseball-related upper extremity injuries through novel features and explainable artificial intelligence.","authors":"Yi-Hsuan Weng, Pei-Hsuan Chang, Kun-Pin Wu, Jiu-Jenq Lin, Tsun-Shun Huang","doi":"10.1080/02640414.2025.2474328","DOIUrl":null,"url":null,"abstract":"<p><p>Upper extremity injuries in baseball players demand advanced prevention. Our study analyzed clinical features using machine learning techniques to provide precise and individualized injury risk assessment and prediction. We recruited 98 baseball players and collected data on glenohumeral internal/external rotation, posterior capsule thickness, supraspinatus tendon thickness, acromiohumeral distance, and occupation ratio. Players were monitored for upper extremity injuries throughout a baseball season. We evaluated the predictive accuracy of these clinical variables using five models: Glenohumeral Internal Rotation Deficit (GIRD), Logistic Regression, Random Forest, CatBoost, and Support Vector Machine. SHapley Additive exPlanation (SHAP) analysis was used to clarify each feature's role in injury prediction. During the season, 28 players experienced injuries. CatBoost (accuracy: 0.70 ± 0.05; AUC: 0.66 ± 0.05) and logistic regression (accuracy: 0.63 ± 0.07; AUC: 0.64 ± 0.08) excelled in bootstrapped evaluations and performed well in independent tests, with CatBoost maintaining an accuracy of 0.70 and an AUC of 0.62. Including GIRD had a negligible effect on CatBoost's accuracy. This integration with SHAP analyses enables a better understanding of each clinical feature's role in predicting injuries, laying the foundation for personalized injury prevention strategies. With these novel approaches, overall and individualized injury prediction can be enhanced, and future research in sports medicine can be advanced.</p>","PeriodicalId":17066,"journal":{"name":"Journal of Sports Sciences","volume":" ","pages":"719-727"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02640414.2025.2474328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Upper extremity injuries in baseball players demand advanced prevention. Our study analyzed clinical features using machine learning techniques to provide precise and individualized injury risk assessment and prediction. We recruited 98 baseball players and collected data on glenohumeral internal/external rotation, posterior capsule thickness, supraspinatus tendon thickness, acromiohumeral distance, and occupation ratio. Players were monitored for upper extremity injuries throughout a baseball season. We evaluated the predictive accuracy of these clinical variables using five models: Glenohumeral Internal Rotation Deficit (GIRD), Logistic Regression, Random Forest, CatBoost, and Support Vector Machine. SHapley Additive exPlanation (SHAP) analysis was used to clarify each feature's role in injury prediction. During the season, 28 players experienced injuries. CatBoost (accuracy: 0.70 ± 0.05; AUC: 0.66 ± 0.05) and logistic regression (accuracy: 0.63 ± 0.07; AUC: 0.64 ± 0.08) excelled in bootstrapped evaluations and performed well in independent tests, with CatBoost maintaining an accuracy of 0.70 and an AUC of 0.62. Including GIRD had a negligible effect on CatBoost's accuracy. This integration with SHAP analyses enables a better understanding of each clinical feature's role in predicting injuries, laying the foundation for personalized injury prevention strategies. With these novel approaches, overall and individualized injury prediction can be enhanced, and future research in sports medicine can be advanced.
期刊介绍:
The Journal of Sports Sciences has an international reputation for publishing articles of a high standard and is both Medline and Clarivate Analytics-listed. It publishes research on various aspects of the sports and exercise sciences, including anatomy, biochemistry, biomechanics, performance analysis, physiology, psychology, sports medicine and health, as well as coaching and talent identification, kinanthropometry and other interdisciplinary perspectives.
The emphasis of the Journal is on the human sciences, broadly defined and applied to sport and exercise. Besides experimental work in human responses to exercise, the subjects covered will include human responses to technologies such as the design of sports equipment and playing facilities, research in training, selection, performance prediction or modification, and stress reduction or manifestation. Manuscripts considered for publication include those dealing with original investigations of exercise, validation of technological innovations in sport or comprehensive reviews of topics relevant to the scientific study of sport.