{"title":"Endothelial SHP-1 regulates diabetes-induced abnormal collateral vessel formation and endothelial cell senescence","authors":"Alexandre Nadeau , Marike Ouellet , Raphaël Béland , Clément Mercier , Stéphanie Robillard , Farah Lizotte , Marc-Antoine Despatis , C. Florian Bentzinger , Pedro Geraldes","doi":"10.1016/j.yjmcc.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Critical limb ischemia is a major cause of peripheral arterial disease and morbidity affecting patients with diabetes. Diabetes-induced premature senescence of endothelial cells (EC) has been proposed as a mechanism leading to impaired ischemia-driven angiogenesis. We showed that hyperglycemia induced expression of the protein tyrosine phosphatase SHP-1, which reduced angiogenic factor activity in ischemic muscle of diabetic mice. Here, we evaluate the impact of SHP-1 deletion on EC function and senescence.</div></div><div><h3>Methods</h3><div>Ligation of the femoral artery was performed in nondiabetic (NDM) and 3 months diabetic (DM) mice with EC-specific deletion of SHP-1. Cell migration, proliferation and protein expression were evaluated in EC exposed to normal (NG) or high glucose (HG) concentrations. Gastrocnemius and tibial artery of patients with diabetes were collected and analyzed.</div></div><div><h3>Results</h3><div>Blood flow reperfusion and limb function were reduced by 43 % and 82 %, respectively in DM mice as compared to NDM mice. EC-specific deletion of SHP-1 in DM mice restored blood flow reperfusion by 60 %, and limb function by 86 %, while capillary density was similar to NDM mice. Moreover, ablation of SHP-1 in EC prevented diabetes-induced expression of the senescence markers p53 and p21 and counteracted Nrf2 downregulation. In EC, elevated expression of beta-galactosidase, p21 and p53, and suppression of Nrf2 and VEGF actions were observed in EC exposed to HG levels and human muscle and artery of patients with diabetes, effects that were reversed by overexpression of dominant negative SHP-1.</div></div><div><h3>Conclusion</h3><div>SHP-1 in EC is a central effector of diabetes-induced senescence and induces aberrant collateral vessel formation and blood flow reperfusion. Reduced SHP-1 expression counteracts these pathologic features.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"202 ","pages":"Pages 50-63"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825000458","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Critical limb ischemia is a major cause of peripheral arterial disease and morbidity affecting patients with diabetes. Diabetes-induced premature senescence of endothelial cells (EC) has been proposed as a mechanism leading to impaired ischemia-driven angiogenesis. We showed that hyperglycemia induced expression of the protein tyrosine phosphatase SHP-1, which reduced angiogenic factor activity in ischemic muscle of diabetic mice. Here, we evaluate the impact of SHP-1 deletion on EC function and senescence.
Methods
Ligation of the femoral artery was performed in nondiabetic (NDM) and 3 months diabetic (DM) mice with EC-specific deletion of SHP-1. Cell migration, proliferation and protein expression were evaluated in EC exposed to normal (NG) or high glucose (HG) concentrations. Gastrocnemius and tibial artery of patients with diabetes were collected and analyzed.
Results
Blood flow reperfusion and limb function were reduced by 43 % and 82 %, respectively in DM mice as compared to NDM mice. EC-specific deletion of SHP-1 in DM mice restored blood flow reperfusion by 60 %, and limb function by 86 %, while capillary density was similar to NDM mice. Moreover, ablation of SHP-1 in EC prevented diabetes-induced expression of the senescence markers p53 and p21 and counteracted Nrf2 downregulation. In EC, elevated expression of beta-galactosidase, p21 and p53, and suppression of Nrf2 and VEGF actions were observed in EC exposed to HG levels and human muscle and artery of patients with diabetes, effects that were reversed by overexpression of dominant negative SHP-1.
Conclusion
SHP-1 in EC is a central effector of diabetes-induced senescence and induces aberrant collateral vessel formation and blood flow reperfusion. Reduced SHP-1 expression counteracts these pathologic features.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.