Inherent loss of parahydrogen-induced polarization for systems with magnetically equivalent nuclei in magnetic field cycling experiments.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
S V Babenko, O G Salnikov, R Z Sagdeev, I V Koptyug
{"title":"Inherent loss of parahydrogen-induced polarization for systems with magnetically equivalent nuclei in magnetic field cycling experiments.","authors":"S V Babenko, O G Salnikov, R Z Sagdeev, I V Koptyug","doi":"10.1063/5.0245351","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, we elucidate the inherent loss of net magnetization (⟨Iz⟩) in parahydrogen-induced polarization (PHIP) experiments with magnetic field cycling (MFC) for spin systems containing magnetically equivalent protons. The effects are shown for propane and diethyl ether as representative examples of potential hyperpolarized MRI contrast agents, but the findings of this work are equally applicable to other multispin systems in the liquid or gas phase. These results are relevant to both adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiments (where 1H nuclei are polarized) and MFC protocols used to transfer parahydrogen spin order to a heteronucleus such as 13C. The investigated effects should be incorporated for a correct evaluation of both the maximum possible NMR signal enhancement and the pairwise selectivity, which are useful in the context of mechanistic studies in the field of catalytic hydrogenation. Among signal enhancement damping factors in ALTADENA, such as T1 relaxation and insufficient adiabaticity of a field sweep, the inherent loss of net magnetization in spin systems containing magnetically equivalent protons (especially in PHIP systems commonly used for mechanistic studies such as propene or propane) has not been thoroughly considered and needs to be clarified. The maximum possible net magnetization in ALTADENA for diethyl ether and propane was shown to be ∑|⟨Iiz⟩| ≈ 0.56 for diethyl ether and ∑|⟨Iiz⟩| ≈ 0.45 for propane, respectively. The inherent loss of net heteronuclear magnetization of the same order of magnitude with an increase in the number of magnetically equivalent protons was also demonstrated for AmMnX-type spin systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0245351","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we elucidate the inherent loss of net magnetization (⟨Iz⟩) in parahydrogen-induced polarization (PHIP) experiments with magnetic field cycling (MFC) for spin systems containing magnetically equivalent protons. The effects are shown for propane and diethyl ether as representative examples of potential hyperpolarized MRI contrast agents, but the findings of this work are equally applicable to other multispin systems in the liquid or gas phase. These results are relevant to both adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiments (where 1H nuclei are polarized) and MFC protocols used to transfer parahydrogen spin order to a heteronucleus such as 13C. The investigated effects should be incorporated for a correct evaluation of both the maximum possible NMR signal enhancement and the pairwise selectivity, which are useful in the context of mechanistic studies in the field of catalytic hydrogenation. Among signal enhancement damping factors in ALTADENA, such as T1 relaxation and insufficient adiabaticity of a field sweep, the inherent loss of net magnetization in spin systems containing magnetically equivalent protons (especially in PHIP systems commonly used for mechanistic studies such as propene or propane) has not been thoroughly considered and needs to be clarified. The maximum possible net magnetization in ALTADENA for diethyl ether and propane was shown to be ∑|⟨Iiz⟩| ≈ 0.56 for diethyl ether and ∑|⟨Iiz⟩| ≈ 0.45 for propane, respectively. The inherent loss of net heteronuclear magnetization of the same order of magnitude with an increase in the number of magnetically equivalent protons was also demonstrated for AmMnX-type spin systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信