Hamiltonian replica-exchange method α-REMD for ring spearing elimination in polymers.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Artem Yu Kunitsyn, Nadezhda A Nekrasova, Nikolai V Krivoshchapov, Eugeny V Alexandrov, Alexander A Pavlov, Michael G Medvedev
{"title":"Hamiltonian replica-exchange method α-REMD for ring spearing elimination in polymers.","authors":"Artem Yu Kunitsyn, Nadezhda A Nekrasova, Nikolai V Krivoshchapov, Eugeny V Alexandrov, Alexander A Pavlov, Michael G Medvedev","doi":"10.1063/5.0241538","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of polymer properties using molecular dynamics (MD) simulations requires a properly relaxed starting structure. Polymer models built from scratch by specialized algorithms (self-avoiding random walk, Monte Carlo, etc.) are far from relaxed and, moreover, often possess a large number of structural defects: close contacts between atoms, wrong bond distances, voids, unfavorable molecular conformations or packing, etc. This is especially problematic for ring-containing polymers whose initial structures also include ring spearing (bonds passing through cycles, including benzene rings). All these defects must be eliminated before running an MD simulation to correctly predict polymer properties. Short MD simulations can be enough to remove close contacts; however, ring spearing elimination and general structure relaxation cannot be achieved this way. In this work, we propose α-Replica Exchange MD (α-REMD)-a Hamiltonian replica-exchange MD protocol that reliably eliminates ring spearing defects and performs a general relaxation of the system. Its efficiency is demonstrated on five polyethersulfones whose initial geometries contained numerous ring intersections that were completely removed by α-REMD.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0241538","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of polymer properties using molecular dynamics (MD) simulations requires a properly relaxed starting structure. Polymer models built from scratch by specialized algorithms (self-avoiding random walk, Monte Carlo, etc.) are far from relaxed and, moreover, often possess a large number of structural defects: close contacts between atoms, wrong bond distances, voids, unfavorable molecular conformations or packing, etc. This is especially problematic for ring-containing polymers whose initial structures also include ring spearing (bonds passing through cycles, including benzene rings). All these defects must be eliminated before running an MD simulation to correctly predict polymer properties. Short MD simulations can be enough to remove close contacts; however, ring spearing elimination and general structure relaxation cannot be achieved this way. In this work, we propose α-Replica Exchange MD (α-REMD)-a Hamiltonian replica-exchange MD protocol that reliably eliminates ring spearing defects and performs a general relaxation of the system. Its efficiency is demonstrated on five polyethersulfones whose initial geometries contained numerous ring intersections that were completely removed by α-REMD.

哈密顿复制交换法α-REMD消除聚合物中的环矛形。
用分子动力学(MD)模拟准确预测聚合物的性质需要一个适当放松的起始结构。通过专门的算法(自避免随机漫步、蒙特卡罗等)从零开始建立的聚合物模型远非轻松,而且往往具有大量的结构缺陷:原子之间的紧密接触、错误的键距、空隙、不利的分子构象或堆积等。这对于含环聚合物来说尤其成问题,因为它们的初始结构也包括环矛形(通过循环的键,包括苯环)。所有这些缺陷必须在运行MD模拟之前消除,才能正确预测聚合物的性能。短暂的MD模拟足以消除密切接触者;然而,这种方法不能消除环尖刺和实现一般的结构松弛。在这项工作中,我们提出了α-副本交换MD (α-REMD)-一个可靠地消除环刺缺陷并执行系统的一般松弛的哈密顿副本交换MD协议。α-REMD完全去除了5种聚醚砜的初始几何形状中含有大量环状交叉的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信