{"title":"Mitochondria-targeted nanovesicles for ursodeoxycholic acid delivery to combat neurodegeneration by ameliorating mitochondrial dysfunction.","authors":"Shizheng Zhang, Mengmeng Li, Yuan Li, Shike Yang, Jian Wang, Xiaoxiang Ren, Xiuhui Wang, Long Bai, Jianping Huang, Zhen Geng, Guosheng Han, Yibin Fang, Jiacan Su","doi":"10.1186/s12951-025-03258-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are pivotal in sustaining oxidative balance and metabolic activity within neurons. It is well-established that mitochondrial dysfunction constitutes a fundamental pathogenic mechanism in neurodegeneration, especially in the context of Parkinson's disease (PD), this represents a promising target for therapeutic intervention. Ursodeoxycholic acid (UDCA), a clinical drug used for liver disease, possesses antioxidant and mitochondrial repair properties. Recently, it has gained attention as a potential therapeutic option for treating various neurodegenerative diseases. However, multiple barriers, including the blood-brain barrier (BBB) and cellular/mitochondrial membranes, significantly hinder the efficient delivery of therapeutic agents to the damaged neuronal mitochondria. Macrophage-derived nanovesicles (NVs), which can traverse the BBB in response to brain inflammation signals, have demonstrated promising tools for brain drug delivery. Nevertheless, natural nanovesicles inherently lack the ability to specifically target mitochondria. Herein, artificial NVs are loaded with UDCA and then functionalized with triphenylphosphonium (TPP) molecules, denoted as UDCA-NVs-TPP. These nanovesicles specifically accumulate in damaged neuronal mitochondria, reduce oxidative stress, and enhance ATP production by 42.62%, thereby alleviating neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP+). Furthermore, UDCA-loaded NVs modified with TPP successfully cross the BBB and accumulate in the striatum of PD mice. These nanoparticles significantly improve PD symptoms, as demonstrated by a 48.56% reduction in pole climb time, a 59.09% increase in hanging ability, and the restoration of tyrosine hydroxylase levels to normal, achieving remarkable therapeutic efficacy. Our work highlights the immense potential of these potent UDCA-loaded, mitochondria-targeting nanovesicles for efficient treatment of PD and other central neurodegenerative diseases.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"202"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03258-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are pivotal in sustaining oxidative balance and metabolic activity within neurons. It is well-established that mitochondrial dysfunction constitutes a fundamental pathogenic mechanism in neurodegeneration, especially in the context of Parkinson's disease (PD), this represents a promising target for therapeutic intervention. Ursodeoxycholic acid (UDCA), a clinical drug used for liver disease, possesses antioxidant and mitochondrial repair properties. Recently, it has gained attention as a potential therapeutic option for treating various neurodegenerative diseases. However, multiple barriers, including the blood-brain barrier (BBB) and cellular/mitochondrial membranes, significantly hinder the efficient delivery of therapeutic agents to the damaged neuronal mitochondria. Macrophage-derived nanovesicles (NVs), which can traverse the BBB in response to brain inflammation signals, have demonstrated promising tools for brain drug delivery. Nevertheless, natural nanovesicles inherently lack the ability to specifically target mitochondria. Herein, artificial NVs are loaded with UDCA and then functionalized with triphenylphosphonium (TPP) molecules, denoted as UDCA-NVs-TPP. These nanovesicles specifically accumulate in damaged neuronal mitochondria, reduce oxidative stress, and enhance ATP production by 42.62%, thereby alleviating neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP+). Furthermore, UDCA-loaded NVs modified with TPP successfully cross the BBB and accumulate in the striatum of PD mice. These nanoparticles significantly improve PD symptoms, as demonstrated by a 48.56% reduction in pole climb time, a 59.09% increase in hanging ability, and the restoration of tyrosine hydroxylase levels to normal, achieving remarkable therapeutic efficacy. Our work highlights the immense potential of these potent UDCA-loaded, mitochondria-targeting nanovesicles for efficient treatment of PD and other central neurodegenerative diseases.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.