A geranylgeranyl reductase homolog required for cholesterol production in Myxococcota.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Alysha K Lee, Paula V Welander
{"title":"A geranylgeranyl reductase homolog required for cholesterol production in Myxococcota.","authors":"Alysha K Lee, Paula V Welander","doi":"10.1128/jb.00495-24","DOIUrl":null,"url":null,"abstract":"<p><p>Myxococcota is a phylum of sterol-producing bacteria. They exhibit a clade depth for sterol biosynthesis unparalleled in the bacterial domain and produce sterols of a biosynthetic complexity that rivals eukaryotes. Additionally, the sterol biosynthesis pathways found in this phylum have been proposed as a potential source for sterol biosynthesis in the last eukaryotic common ancestor, lending evolutionary importance to our understanding of this pathway in Myxococcota. However, sterol production has only been characterized in a few species, and outstanding questions about the evolutionary history of this pathway remain. Here, we identify two myxobacteria, <i>Minicystis rosea</i> and <i>Sandaracinus amylolyticus</i>, capable of cholesterol biosynthesis. These two myxobacteria possess a cholesterol biosynthesis pathway that differs in both the ordering and enzymes involved in biosynthesis compared with <i>Enhygromyxa salina</i>, a myxobacterium previously demonstrated to produce cholesterol, as well as the canonical pathways found in eukaryotes. We characterize an alternative bacterial reductase responsible for performing C-24 reduction, further delineating bacterial cholesterol production from eukaryotes. Finally, we examine the distribution and phylogenetic relationships of sterol biosynthesis proteins across both cultured and uncultured Myxococcota species, providing evidence for multiple acquisition events and instances of both horizontal and vertical transfer at the family level. Altogether, this work further demonstrates the capacity of myxobacteria to synthesize eukaryotic sterols but with an underlying diversity in the biochemical reactions that govern sterol synthesis, suggesting a complex evolutionary history and refining our understanding of how myxobacterial cholesterol production relates to their eukaryotic counterparts.</p><p><strong>Importance: </strong>Sterols are essential and ubiquitous lipids in eukaryotes, but their significance in bacteria is less understood. Sterol production in Myxococcota, a phylum of developmentally complex predatory bacteria, has provided insight into novel sterol biochemistry and prompted discussion regarding the evolution of this pathway within both the eukaryotic and bacterial domains. Here, we characterize cholesterol biosynthesis in two myxobacteria, providing evidence for distinct pathway organization and identifying a unique protein responsible for C-24 reduction. We couple these results with the phylogenomic analysis of sterol biosynthesis within Myxococcota, revealing a complicated evolutionary history marked by vertical and horizontal transfer. This suggests a mosaic acquisition of this pathway in Myxococcota and highlights the complex role myxobacteria may have had in sterol transfer to eukaryotes.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0049524"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00495-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myxococcota is a phylum of sterol-producing bacteria. They exhibit a clade depth for sterol biosynthesis unparalleled in the bacterial domain and produce sterols of a biosynthetic complexity that rivals eukaryotes. Additionally, the sterol biosynthesis pathways found in this phylum have been proposed as a potential source for sterol biosynthesis in the last eukaryotic common ancestor, lending evolutionary importance to our understanding of this pathway in Myxococcota. However, sterol production has only been characterized in a few species, and outstanding questions about the evolutionary history of this pathway remain. Here, we identify two myxobacteria, Minicystis rosea and Sandaracinus amylolyticus, capable of cholesterol biosynthesis. These two myxobacteria possess a cholesterol biosynthesis pathway that differs in both the ordering and enzymes involved in biosynthesis compared with Enhygromyxa salina, a myxobacterium previously demonstrated to produce cholesterol, as well as the canonical pathways found in eukaryotes. We characterize an alternative bacterial reductase responsible for performing C-24 reduction, further delineating bacterial cholesterol production from eukaryotes. Finally, we examine the distribution and phylogenetic relationships of sterol biosynthesis proteins across both cultured and uncultured Myxococcota species, providing evidence for multiple acquisition events and instances of both horizontal and vertical transfer at the family level. Altogether, this work further demonstrates the capacity of myxobacteria to synthesize eukaryotic sterols but with an underlying diversity in the biochemical reactions that govern sterol synthesis, suggesting a complex evolutionary history and refining our understanding of how myxobacterial cholesterol production relates to their eukaryotic counterparts.

Importance: Sterols are essential and ubiquitous lipids in eukaryotes, but their significance in bacteria is less understood. Sterol production in Myxococcota, a phylum of developmentally complex predatory bacteria, has provided insight into novel sterol biochemistry and prompted discussion regarding the evolution of this pathway within both the eukaryotic and bacterial domains. Here, we characterize cholesterol biosynthesis in two myxobacteria, providing evidence for distinct pathway organization and identifying a unique protein responsible for C-24 reduction. We couple these results with the phylogenomic analysis of sterol biosynthesis within Myxococcota, revealing a complicated evolutionary history marked by vertical and horizontal transfer. This suggests a mosaic acquisition of this pathway in Myxococcota and highlights the complex role myxobacteria may have had in sterol transfer to eukaryotes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信