Attaining high accuracy for charge-transfer excitations in non-covalent complexes at second-order perturbation cost: The importance of state-specific self-consistency.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Nhan Tri Tran, Lan Nguyen Tran
{"title":"Attaining high accuracy for charge-transfer excitations in non-covalent complexes at second-order perturbation cost: The importance of state-specific self-consistency.","authors":"Nhan Tri Tran, Lan Nguyen Tran","doi":"10.1063/5.0246440","DOIUrl":null,"url":null,"abstract":"<p><p>Intermolecular charge-transfer (xCT) excited states important for various practical applications are challenging for many standard computational methods. It is highly desirable to have an affordable method that can treat xCT states accurately. In the present work, we extend our self-consistent perturbation methods, named one-body second-order Møller-Plesset and its spin-opposite scaling variant (O2BMP2), for excited states without additional costs to the ground state. We then assessed their performance for the prediction of xCT excitation energies. Thanks to self-consistency, our methods yield small errors relative to high-level coupled cluster methods and outperform other same scaling (N5) methods, such as CC2 and ADC(2). In particular, O2BMP2, whose scaling can be reduced to N4, can even reach the accuracy of CC3 (N7) with errors less than 0.1 eV. This method is thus highly promising for treating xCT states in large compounds vital for applications.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0246440","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intermolecular charge-transfer (xCT) excited states important for various practical applications are challenging for many standard computational methods. It is highly desirable to have an affordable method that can treat xCT states accurately. In the present work, we extend our self-consistent perturbation methods, named one-body second-order Møller-Plesset and its spin-opposite scaling variant (O2BMP2), for excited states without additional costs to the ground state. We then assessed their performance for the prediction of xCT excitation energies. Thanks to self-consistency, our methods yield small errors relative to high-level coupled cluster methods and outperform other same scaling (N5) methods, such as CC2 and ADC(2). In particular, O2BMP2, whose scaling can be reduced to N4, can even reach the accuracy of CC3 (N7) with errors less than 0.1 eV. This method is thus highly promising for treating xCT states in large compounds vital for applications.

以二阶扰动代价获得非共价配合物中电荷转移激发的高精度:状态特异性自洽的重要性。
分子间电荷转移(xCT)激发态对各种实际应用具有重要意义,对许多标准计算方法具有挑战性。非常希望有一种负担得起的方法,可以准确地处理xCT状态。在目前的工作中,我们扩展了我们的自一致微扰方法,称为一体二阶Møller-Plesset及其自旋相反的缩放变体(O2BMP2),用于激发态,而不会对基态产生额外的代价。然后我们评估了它们在预测xCT激发能方面的性能。由于自一致性,我们的方法相对于高级耦合聚类方法产生较小的误差,并且优于其他相同缩放(N5)方法,如CC2和ADC(2)。特别是O2BMP2,其尺度可以降至N4,甚至可以达到CC3 (N7)的精度,误差小于0.1 eV。因此,这种方法非常有希望处理对应用至关重要的大型化合物中的xCT状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信