Advancing the Accuracy of Anti-MRSA Peptide Prediction Through Integrating Multi-Source Protein Language Models.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Watshara Shoombuatong, Pakpoom Mookdarsanit, Lawankorn Mookdarsanit, Nalini Schaduangrat, Saeed Ahmed, Muhammad Kabir, Pramote Chumnanpuen
{"title":"Advancing the Accuracy of Anti-MRSA Peptide Prediction Through Integrating Multi-Source Protein Language Models.","authors":"Watshara Shoombuatong, Pakpoom Mookdarsanit, Lawankorn Mookdarsanit, Nalini Schaduangrat, Saeed Ahmed, Muhammad Kabir, Pramote Chumnanpuen","doi":"10.1007/s12539-025-00696-5","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of methicillin-resistant Staphylococcus aureus (MRSA) as a recognized cause of community-acquired and hospital infections has brought about a need for the efficient and accurate identification of peptides with anti-MRSA properties in drug discovery and development pipelines. However, current experimental methods often tend to be labor- and resource-intensive. Thus, there is an immediate requirement to develop practical computational solutions for identifying sequence-based anti-MRSA peptides. Lately, pre-trained protein language models (pLMs) have emerged as a remarkable advancement for encoding peptide sequences as discriminative feature embeddings, uncovering plentiful protein-level information and successfully repurposing it for in silico peptide property prediction. In this study, we present pLM4MRSA, a framework based on pLMs designed to enhance the accuracy of predicting anti-MRSA peptides. In this framework, we combine feature embeddings from various pLMs, such as ProtTrans, and evolutionary-scale modeling (ESM-2) which provide complementary information for prediction. These individual pLM strengths are integrated to form hybrid feature embeddings. Next, we apply principal component analysis (PCA) to process these hybrid embeddings. The resulting PCA-transformed feature vectors are then used as inputs for constructing the predictive model. Experimental results on the independent test dataset showed that the proposed pLM4MRSA approach achieved a balanced accuracy and Matthew correlation coefficient of 0.983 and 0.980, respectively, representing remarkable improvements over the state-of-the-art methods by 2.53%-4.83% and 7.73%-13.23%, respectively. This indicates that pLM4MRSA is a high-performance prediction model with excellent scope of applicability. Additionally, comparison with well-known hand-crafted features demonstrated that the proposed hybrid feature embeddings complement each other effectively, capturing discriminative patterns for more accurate anti-MRSA peptide prediction. We anticipate that pLM4MRSA will serve as an effective solution for accurate and high-capacity prediction of anti-MRSA peptides from peptide sequences.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00696-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) as a recognized cause of community-acquired and hospital infections has brought about a need for the efficient and accurate identification of peptides with anti-MRSA properties in drug discovery and development pipelines. However, current experimental methods often tend to be labor- and resource-intensive. Thus, there is an immediate requirement to develop practical computational solutions for identifying sequence-based anti-MRSA peptides. Lately, pre-trained protein language models (pLMs) have emerged as a remarkable advancement for encoding peptide sequences as discriminative feature embeddings, uncovering plentiful protein-level information and successfully repurposing it for in silico peptide property prediction. In this study, we present pLM4MRSA, a framework based on pLMs designed to enhance the accuracy of predicting anti-MRSA peptides. In this framework, we combine feature embeddings from various pLMs, such as ProtTrans, and evolutionary-scale modeling (ESM-2) which provide complementary information for prediction. These individual pLM strengths are integrated to form hybrid feature embeddings. Next, we apply principal component analysis (PCA) to process these hybrid embeddings. The resulting PCA-transformed feature vectors are then used as inputs for constructing the predictive model. Experimental results on the independent test dataset showed that the proposed pLM4MRSA approach achieved a balanced accuracy and Matthew correlation coefficient of 0.983 and 0.980, respectively, representing remarkable improvements over the state-of-the-art methods by 2.53%-4.83% and 7.73%-13.23%, respectively. This indicates that pLM4MRSA is a high-performance prediction model with excellent scope of applicability. Additionally, comparison with well-known hand-crafted features demonstrated that the proposed hybrid feature embeddings complement each other effectively, capturing discriminative patterns for more accurate anti-MRSA peptide prediction. We anticipate that pLM4MRSA will serve as an effective solution for accurate and high-capacity prediction of anti-MRSA peptides from peptide sequences.

整合多源蛋白语言模型提高抗mrsa多肽预测的准确性
耐甲氧西林金黄色葡萄球菌(MRSA)的出现是社区获得性和医院感染的公认原因,这使得在药物发现和开发管道中需要有效和准确地鉴定具有抗MRSA特性的肽。然而,目前的实验方法往往倾向于劳动和资源密集型。因此,迫切需要开发实用的计算解决方案来识别基于序列的抗mrsa肽。最近,预训练的蛋白质语言模型(pLMs)作为一种显著的进步出现,用于编码肽序列作为判别特征嵌入,揭示丰富的蛋白质水平信息,并成功地将其重新用于硅肽性质预测。在这项研究中,我们提出了pLM4MRSA,这是一个基于pLMs的框架,旨在提高预测抗mrsa肽的准确性。在这个框架中,我们结合了来自各种plm的特征嵌入,如ProtTrans和进化尺度建模(ESM-2),为预测提供补充信息。这些单独的pLM优势被整合成混合特征嵌入。接下来,我们应用主成分分析(PCA)来处理这些混合嵌入。然后将得到的pca变换后的特征向量用作构建预测模型的输入。在独立测试数据集上的实验结果表明,提出的pLM4MRSA方法获得了0.983和0.980的平衡精度和马修相关系数,比现有方法分别提高了2.53% ~ 4.83%和7.73% ~ 13.23%。这表明pLM4MRSA是一种高性能的预测模型,具有很好的适用性。此外,与已知的手工特征比较表明,所提出的混合特征嵌入可以有效地互补,捕获判别模式,从而更准确地预测抗mrsa肽。我们预计pLM4MRSA将成为从肽序列中准确和高容量预测抗mrsa肽的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信