An assessment of synthesis technique for porous nano and micro fibrous wound dressings with natural oil supplements.

IF 3.1 4区 医学 Q2 BIOPHYSICS
Meltem Kum, Levent Sendogdular, Selda Topcu Sendogdular
{"title":"An assessment of synthesis technique for porous nano and micro fibrous wound dressings with natural oil supplements.","authors":"Meltem Kum, Levent Sendogdular, Selda Topcu Sendogdular","doi":"10.1177/22808000251314106","DOIUrl":null,"url":null,"abstract":"<p><p>For millennia, aloe vera (AV) and eucalyptus oil (EO) have been recognized as natural sources of healing and have been utilized for medicinal purposes in the realm of health. As an attempt to treat pressure sores, AV and eucalyptus oil were added as supplements to biocompatible and biodegradable poly (ethylene oxide) (PEO) polymer to synthesize nano and micro fibrous wound dressings by the electrospinning process. Additive solubility in polymeric matrix is the key parameter to achieve the synthesis of homogeneous fibers with controlled release of therapeutic oils, cure and humidity; therefore, lecithin as herbal (soybean) based emulsifier was used to control additive/polymer solubility. In this study, fibrous dressing in mat form with antioxidant activity was successfully obtained with the addition of natural AV and EO in PEO polymer solutions through electrospinning technique. Subsequently, the synthesized fibers were examined via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), moisture absorption and UV-Vis spectroscopy. SEM imaging demonstrated the formation of randomly-oriented and beadless fibers with size of 0.48 ± 0.23 µm out of PEO/AV/EO/Lecithin blend and also with the addition of lecithin, fiber thicknesses were observed to be increasing. Moisture absorption analysis revealed that the weight of fibrous mat was affected by the humidity of the ambient environment. Relative humidity for 7 days ranged between 32% and 37% and it was observed that lecithin content increased the moisture retention rate by 50%. Uv-Vis results suggested that a more regular performance has been achieved with lecithin being involved in terms of timely manner changes; therefore, the contrast of samples between hours and days became more distinctive. PEO/AV/EO/Lecithin nanofiber also indicated antibacterial ability against <i>Escherichia coli</i> with approximately 18.5 mm diameter of inhibition. This research proves that the potential for developing biocompatible wound dressings with long-lasting moisture to the wound is possible through the use of these natural healing agents made homogeneously distributed through structure by the use of emulsifier.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251314106"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000251314106","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

For millennia, aloe vera (AV) and eucalyptus oil (EO) have been recognized as natural sources of healing and have been utilized for medicinal purposes in the realm of health. As an attempt to treat pressure sores, AV and eucalyptus oil were added as supplements to biocompatible and biodegradable poly (ethylene oxide) (PEO) polymer to synthesize nano and micro fibrous wound dressings by the electrospinning process. Additive solubility in polymeric matrix is the key parameter to achieve the synthesis of homogeneous fibers with controlled release of therapeutic oils, cure and humidity; therefore, lecithin as herbal (soybean) based emulsifier was used to control additive/polymer solubility. In this study, fibrous dressing in mat form with antioxidant activity was successfully obtained with the addition of natural AV and EO in PEO polymer solutions through electrospinning technique. Subsequently, the synthesized fibers were examined via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), moisture absorption and UV-Vis spectroscopy. SEM imaging demonstrated the formation of randomly-oriented and beadless fibers with size of 0.48 ± 0.23 µm out of PEO/AV/EO/Lecithin blend and also with the addition of lecithin, fiber thicknesses were observed to be increasing. Moisture absorption analysis revealed that the weight of fibrous mat was affected by the humidity of the ambient environment. Relative humidity for 7 days ranged between 32% and 37% and it was observed that lecithin content increased the moisture retention rate by 50%. Uv-Vis results suggested that a more regular performance has been achieved with lecithin being involved in terms of timely manner changes; therefore, the contrast of samples between hours and days became more distinctive. PEO/AV/EO/Lecithin nanofiber also indicated antibacterial ability against Escherichia coli with approximately 18.5 mm diameter of inhibition. This research proves that the potential for developing biocompatible wound dressings with long-lasting moisture to the wound is possible through the use of these natural healing agents made homogeneously distributed through structure by the use of emulsifier.

天然补油多孔纳米微纤维创面敷料的合成技术评价。
几千年来,芦荟(AV)和桉树油(EO)被认为是治疗的天然来源,并被用于健康领域的药用目的。为治疗压疮,尝试在生物相容性和可生物降解的聚环氧乙烷(PEO)聚合物中添加AV和桉树油,采用静电纺丝法合成纳米和微纤维创面敷料。添加剂在聚合物基体中的溶解度是实现治疗油控释、固化和湿度可控的均质纤维合成的关键参数;因此,采用卵磷脂作为植物(大豆)基乳化剂来控制添加剂/聚合物的溶解度。本研究通过静电纺丝技术,在PEO聚合物溶液中加入天然AV和EO,成功制备了具有抗氧化活性的毡状纤维敷料。随后,通过扫描电镜(SEM)、热重分析(TGA)、吸湿性和紫外可见光谱(UV-Vis)对合成纤维进行了表征。扫描电镜成像显示,PEO/AV/EO/卵磷脂共混物形成了尺寸为0.48±0.23µm的随机取向无头纤维,并且随着卵磷脂的加入,纤维厚度也有所增加。吸湿分析表明,纤维毡的重量受周围环境湿度的影响。相对湿度为32% ~ 37%,卵磷脂含量使保水率提高50%。紫外-可见结果表明,卵磷脂的参与在及时的方式变化方面取得了更规律的性能;因此,样品在小时和天之间的对比变得更加明显。PEO/AV/EO/卵磷脂纳米纤维对大肠杆菌也有抑菌作用,抑菌直径约为18.5 mm。这项研究证明,通过使用这些天然愈合剂,通过使用乳化剂均匀分布在结构中,开发具有持久伤口水分的生物相容性伤口敷料的潜力是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信