Investigating Physical Layer Security in Molecular Communication Networks

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fatemeh Sadat Saeidi;Naghmeh Sadat Moayedian
{"title":"Investigating Physical Layer Security in Molecular Communication Networks","authors":"Fatemeh Sadat Saeidi;Naghmeh Sadat Moayedian","doi":"10.1109/TNB.2024.3504540","DOIUrl":null,"url":null,"abstract":"In molecular communication networks, understanding the security level allows us to assess the quality of information transmitted accurately. The presence of unintended nodes in these networks is one of the factors compromising the security of information. This paper considers the simultaneous presence of a jammer and an eavesdropper as unintended nodes. This existence of unintended nodes prompts us to explore methods for assessing the security of a proposed system. Physical layer approaches can be regarded as one of the most efficient methods for assessing security in molecular communication networks. In this paper, we have utilized these approaches instead of the conventional cryptographic methods. At this layer, we have used several metrics to evaluate the security of our system; secrecy capacity (SC), the average probability of error (APOE), and comprehensive secure distance (CSD). By using SC, we also employed other approaches to improve security, such as changing the time interval, jamming molecules, and varying the distance between the transmitter and the receiver. As the last step, Monte Carlo simulation is used to verify the results obtained through analytical analysis.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"208-217"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10764761/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In molecular communication networks, understanding the security level allows us to assess the quality of information transmitted accurately. The presence of unintended nodes in these networks is one of the factors compromising the security of information. This paper considers the simultaneous presence of a jammer and an eavesdropper as unintended nodes. This existence of unintended nodes prompts us to explore methods for assessing the security of a proposed system. Physical layer approaches can be regarded as one of the most efficient methods for assessing security in molecular communication networks. In this paper, we have utilized these approaches instead of the conventional cryptographic methods. At this layer, we have used several metrics to evaluate the security of our system; secrecy capacity (SC), the average probability of error (APOE), and comprehensive secure distance (CSD). By using SC, we also employed other approaches to improve security, such as changing the time interval, jamming molecules, and varying the distance between the transmitter and the receiver. As the last step, Monte Carlo simulation is used to verify the results obtained through analytical analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信