Investigating Physical Layer Security in Molecular Communication Networks

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fatemeh Sadat Saeidi;Naghmeh Sadat Moayedian
{"title":"Investigating Physical Layer Security in Molecular Communication Networks","authors":"Fatemeh Sadat Saeidi;Naghmeh Sadat Moayedian","doi":"10.1109/TNB.2024.3504540","DOIUrl":null,"url":null,"abstract":"In molecular communication networks, understanding the security level allows us to assess the quality of information transmitted accurately. The presence of unintended nodes in these networks is one of the factors compromising the security of information. This paper considers the simultaneous presence of a jammer and an eavesdropper as unintended nodes. This existence of unintended nodes prompts us to explore methods for assessing the security of a proposed system. Physical layer approaches can be regarded as one of the most efficient methods for assessing security in molecular communication networks. In this paper, we have utilized these approaches instead of the conventional cryptographic methods. At this layer, we have used several metrics to evaluate the security of our system; secrecy capacity (SC), the average probability of error (APOE), and comprehensive secure distance (CSD). By using SC, we also employed other approaches to improve security, such as changing the time interval, jamming molecules, and varying the distance between the transmitter and the receiver. As the last step, Monte Carlo simulation is used to verify the results obtained through analytical analysis.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"208-217"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10764761/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In molecular communication networks, understanding the security level allows us to assess the quality of information transmitted accurately. The presence of unintended nodes in these networks is one of the factors compromising the security of information. This paper considers the simultaneous presence of a jammer and an eavesdropper as unintended nodes. This existence of unintended nodes prompts us to explore methods for assessing the security of a proposed system. Physical layer approaches can be regarded as one of the most efficient methods for assessing security in molecular communication networks. In this paper, we have utilized these approaches instead of the conventional cryptographic methods. At this layer, we have used several metrics to evaluate the security of our system; secrecy capacity (SC), the average probability of error (APOE), and comprehensive secure distance (CSD). By using SC, we also employed other approaches to improve security, such as changing the time interval, jamming molecules, and varying the distance between the transmitter and the receiver. As the last step, Monte Carlo simulation is used to verify the results obtained through analytical analysis.
研究分子通信网络的物理层安全性。
在分子通信网络中,了解安全级别使我们能够准确地评估传输信息的质量。这些网络中意外节点的存在是危及信息安全的因素之一。本文将干扰者和窃听者同时存在视为非预期节点。这种非预期节点的存在促使我们探索评估所提议系统安全性的方法。物理层方法是评估分子通信网络安全性最有效的方法之一。在本文中,我们利用这些方法来代替传统的加密方法。在这一层,我们使用了几个指标来评估系统的安全性;保密能力(SC)、平均错误概率(APOE)和综合安全距离(CSD)。通过使用SC,我们还采用了其他方法来提高安全性,例如改变时间间隔,干扰分子,以及改变发射器和接收器之间的距离。最后一步,采用蒙特卡罗仿真对解析分析得到的结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信