Gut microbiome-driven regulation of sex hormone homeostasis: a potential neuroendocrine connection.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-03-12 DOI:10.1080/19490976.2025.2476562
Anna Clapp Organski, Bartek Rajwa, Anjali Reddivari, Joan S Jorgensen, Tzu-Wen L Cross
{"title":"Gut microbiome-driven regulation of sex hormone homeostasis: a potential neuroendocrine connection.","authors":"Anna Clapp Organski, Bartek Rajwa, Anjali Reddivari, Joan S Jorgensen, Tzu-Wen L Cross","doi":"10.1080/19490976.2025.2476562","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome is known to have a bidirectional relationship with sex hormone homeostasis; however, its role in mediating interactions between the primary regulatory axes of sex hormones and their productions is yet to be fully understood. We utilized both conventionally raised and gnotobiotic mouse models to investigate the regulatory role of the gut microbiome on the hypothalamic-pituitary-gonadal (HPG) axis. Male and female conventionally raised mice underwent surgical modifications as follows: (1) hormonally intact controls; (2) gonadectomized males and females; (3) gonadectomized males and females supplemented with testosterone and estrogen, respectively. Fecal samples from these mice were used to colonize sex-matched, intact, germ-free recipient mice through fecal microbiota transplant (FMT). Serum gonadotropins, gonadal sex hormones, cecal microbiota, and the serum global metabolome were assessed. FMT recipients of gonadectomized-associated microbiota showed lower circulating gonadotropin levels than recipients of intact-associated microbiota, opposite to that of FMT donors. FMT recipients of gonadectomized-associated microbiota also had greater testicular weights compared to recipients of intact-associated microbiota. The gut microbiota composition of recipient mice differed significantly based on the FMT received, with the male microbiota having a more concerted impact in response to changes in the HPG axis. Network analyses showed that multiple metabolically unrelated pathways may be involved in driving differences in serum metabolites due to sex and microbiome received in the recipient mice. In sum, our findings indicate that the gut microbiome responds to the HPG axis and subsequently modulates its feedback mechanisms. A deeper understanding of interactions between the gut microbiota and the neuroendocrine-gonadal system may contribute to the development of therapies for sexually dimorphic diseases.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2476562"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2476562","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiome is known to have a bidirectional relationship with sex hormone homeostasis; however, its role in mediating interactions between the primary regulatory axes of sex hormones and their productions is yet to be fully understood. We utilized both conventionally raised and gnotobiotic mouse models to investigate the regulatory role of the gut microbiome on the hypothalamic-pituitary-gonadal (HPG) axis. Male and female conventionally raised mice underwent surgical modifications as follows: (1) hormonally intact controls; (2) gonadectomized males and females; (3) gonadectomized males and females supplemented with testosterone and estrogen, respectively. Fecal samples from these mice were used to colonize sex-matched, intact, germ-free recipient mice through fecal microbiota transplant (FMT). Serum gonadotropins, gonadal sex hormones, cecal microbiota, and the serum global metabolome were assessed. FMT recipients of gonadectomized-associated microbiota showed lower circulating gonadotropin levels than recipients of intact-associated microbiota, opposite to that of FMT donors. FMT recipients of gonadectomized-associated microbiota also had greater testicular weights compared to recipients of intact-associated microbiota. The gut microbiota composition of recipient mice differed significantly based on the FMT received, with the male microbiota having a more concerted impact in response to changes in the HPG axis. Network analyses showed that multiple metabolically unrelated pathways may be involved in driving differences in serum metabolites due to sex and microbiome received in the recipient mice. In sum, our findings indicate that the gut microbiome responds to the HPG axis and subsequently modulates its feedback mechanisms. A deeper understanding of interactions between the gut microbiota and the neuroendocrine-gonadal system may contribute to the development of therapies for sexually dimorphic diseases.

肠道微生物驱动的性激素稳态调节:潜在的神经内分泌联系。
众所周知,肠道微生物群与性激素稳态存在双向关系;然而,它在性激素的主要调节轴和它们的产生之间的相互作用的中介作用尚未完全了解。我们使用常规饲养和非生物饲养小鼠模型来研究肠道微生物组对下丘脑-垂体-性腺(HPG)轴的调节作用。常规饲养的雄性和雌性小鼠进行了以下手术改造:(1)激素完整的对照组;(2)去性腺的男性和女性;(3)分别添加睾酮和雌激素的雄性和雌性。将这些小鼠的粪便样本通过粪便微生物群移植(FMT)移植到性别匹配、完整、无菌的受体小鼠中。评估血清促性腺激素、性激素、盲肠微生物群和血清总代谢组。与FMT供者相反,FMT受者的促性腺激素循环水平低于完整的相关微生物群受者。与完整的相关微生物群的接受者相比,性腺相关微生物群的FMT接受者也有更大的睾丸重量。受体小鼠的肠道微生物群组成因所接受的FMT而有显著差异,雄性微生物群对HPG轴的变化有更一致的影响。网络分析表明,多种代谢不相关的途径可能参与了受体小鼠因性别和微生物组而导致的血清代谢物差异。总之,我们的研究结果表明,肠道微生物组响应HPG轴并随后调节其反馈机制。对肠道微生物群与神经内分泌性腺系统之间相互作用的更深入了解可能有助于发展治疗性二型性疾病的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信