Yangyang Zhao, Danyang Cui, Yanan Xiao, Xu Han, Miao Jiang, Yang Gong
{"title":"Clinical Analysis and Network Pharmacology in Revealing the Mechanism of Daifu Decoction on the Relapse of UC.","authors":"Yangyang Zhao, Danyang Cui, Yanan Xiao, Xu Han, Miao Jiang, Yang Gong","doi":"10.2147/DDDT.S497944","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Daifu Decoction (DFD), a patented herbal prescription used to prevent and treat ulcerative colitis (UC). This study aimed to reveal the effect of DFD on the relapse of UC and its mechanism via integrated retrospective clinical analysis, network pharmacology and in vivo and in vitro experimental validation.</p><p><strong>Methods: </strong>First, the clinical data of UC patients treated with DFD were reviewed from a real-world study (RWS), and the relapse at 24 weeks after drug withdrawal was recorded to evaluate the relapse rate. Next, the chemical components of DFD were identified via ultra performance liquid chromatography‒mass spectrometry (UPLC‒MS), and the differentially expressed genes (DEGs) between UC patients in the active and remission stages were screened as disease targets related to the relapse of UC from the Gene Expression Omnibus (GEO) database. The core components, targets and key signalling pathways of DFD for preventing the relapse of UC were discussed via network pharmacology. Finally, the above results were verified via molecular docking and in vivo and in vitro experiments.</p><p><strong>Results: </strong>A total of 475 UC patients were included, and the relapse rate of UC treated with DFD was 23.9%. Additionally, the 221 components identified by UPLC-MS and 398 DEGs related to the relapse of UC enriched the main pathway of the relapse of UC was IL-17 signaling pathway and the inflammatory-related targets, such as IL6, PTGS2, MMP7, MMP3, MMP1. Moreover, molecular docking revealed that the core components of DFD were able to bind to inflammation-related targets, and in vivo and in vitro experiments demonstrated that DFD could inhibit the IL-17 pathway, increase the level of claudin-1, and control inflammation to prevent UC relapse.</p><p><strong>Conclusion: </strong>DFD can effectively prevent the relapse of UC which may be related to inhibiting the activation of IL-17 signalling pathway.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"1629-1653"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S497944","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Daifu Decoction (DFD), a patented herbal prescription used to prevent and treat ulcerative colitis (UC). This study aimed to reveal the effect of DFD on the relapse of UC and its mechanism via integrated retrospective clinical analysis, network pharmacology and in vivo and in vitro experimental validation.
Methods: First, the clinical data of UC patients treated with DFD were reviewed from a real-world study (RWS), and the relapse at 24 weeks after drug withdrawal was recorded to evaluate the relapse rate. Next, the chemical components of DFD were identified via ultra performance liquid chromatography‒mass spectrometry (UPLC‒MS), and the differentially expressed genes (DEGs) between UC patients in the active and remission stages were screened as disease targets related to the relapse of UC from the Gene Expression Omnibus (GEO) database. The core components, targets and key signalling pathways of DFD for preventing the relapse of UC were discussed via network pharmacology. Finally, the above results were verified via molecular docking and in vivo and in vitro experiments.
Results: A total of 475 UC patients were included, and the relapse rate of UC treated with DFD was 23.9%. Additionally, the 221 components identified by UPLC-MS and 398 DEGs related to the relapse of UC enriched the main pathway of the relapse of UC was IL-17 signaling pathway and the inflammatory-related targets, such as IL6, PTGS2, MMP7, MMP3, MMP1. Moreover, molecular docking revealed that the core components of DFD were able to bind to inflammation-related targets, and in vivo and in vitro experiments demonstrated that DFD could inhibit the IL-17 pathway, increase the level of claudin-1, and control inflammation to prevent UC relapse.
Conclusion: DFD can effectively prevent the relapse of UC which may be related to inhibiting the activation of IL-17 signalling pathway.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.