Leonel Herrera-Alsina, Špela Di Batista Borko, Ester Premate, Ole Seehausen, Florian Altermatt, Cene Fišer
{"title":"Different traits dominate evolution at early and late stages of adaptive radiation.","authors":"Leonel Herrera-Alsina, Špela Di Batista Borko, Ester Premate, Ole Seehausen, Florian Altermatt, Cene Fišer","doi":"10.1093/evolut/qpaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive radiation (AR), a process of rapid speciation and ecomorphological diversification, played an important role in generating past and contemporary global biodiversity. An unsolved question is what maintains high rates of speciation during AR, a phenomenon we call \"speciation paradox\". One possible explanation for resolving this paradox is a sequential trait evolution, i.e., a series of ecological diversifications, which enables evolving lineages to fully and more effectively exploit the ecological space. We tested this hypothesis using the highly diverse subterranean amphipod genus Niphargus. Niphargus shows distinct signatures of adaptive radiation both at the genus level and at the level of four larger clades. Our analysis revealed decoupled evolution of habitat-related traits and trophic-biology-related traits. Moreover, on a genus level, we found the evidence that AR commences with a tight association between speciation rates and the dynamics of habitat-related traits. At a later stage, speciation dynamics become associated with diversification of trophic-biology-related traits. This suggests that the dependence of macroevolutionary rates in this group switches among niche axes before saturation, resulting in prolonged high speciation rates during AR.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf051","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive radiation (AR), a process of rapid speciation and ecomorphological diversification, played an important role in generating past and contemporary global biodiversity. An unsolved question is what maintains high rates of speciation during AR, a phenomenon we call "speciation paradox". One possible explanation for resolving this paradox is a sequential trait evolution, i.e., a series of ecological diversifications, which enables evolving lineages to fully and more effectively exploit the ecological space. We tested this hypothesis using the highly diverse subterranean amphipod genus Niphargus. Niphargus shows distinct signatures of adaptive radiation both at the genus level and at the level of four larger clades. Our analysis revealed decoupled evolution of habitat-related traits and trophic-biology-related traits. Moreover, on a genus level, we found the evidence that AR commences with a tight association between speciation rates and the dynamics of habitat-related traits. At a later stage, speciation dynamics become associated with diversification of trophic-biology-related traits. This suggests that the dependence of macroevolutionary rates in this group switches among niche axes before saturation, resulting in prolonged high speciation rates during AR.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.