Xiangzi Zhang, Shengyao Zhang, Haoyuan Zhang, Houmin Wang, Jinyi Long
{"title":"Post-Movement Beta Synchronization Induced by Speed Effects IHI from Ipsilateral to Contralateral Motor Cortex.","authors":"Xiangzi Zhang, Shengyao Zhang, Haoyuan Zhang, Houmin Wang, Jinyi Long","doi":"10.1523/ENEURO.0370-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Beta event-related spectral perturbation (ERSP), including bilateral movement-related beta desynchronization (MRBD) and post-movement beta synchronization (PMBS), can be evoked by unilateral speed movement. A potential correlation might exist between power (de)synchronization and interhemispheric coherence during movement execution. However, during the PMBS phase, the existence of interhemispheric coupling and the effect of speed on it are largely undiscovered. This study aimed to answer this question. In the present study, we investigated eight healthy, right-handed volunteers using a combination of electroencephalography (EEG), transcranial magnetic stimulation (TMS), and electromyography (EMG). We explored interhemispheric (directed) coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered that: (i) Compared to the MRBD period, interhemispheric coherence was greater during the PMBS period. Furthermore, ballistic movement induced a larger coherence during the PMBS period, but not during the MRBD period. (ii) In the MRBD phase, directed coherence from the contralateral motor cortex (CM1) to the ipsilateral motor cortex (IM1) was larger, with a reverse tendency observed during the PMBS period. Additionally, in ballistic movement, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence, with no effect of speed on directed coherence detected in the MRBD phase. To advance the understanding of neural mechanisms and the causality of interhemispheric coherence during the PMBS period, we investigated the interhemispheric inhibition (IHI) from IM1 to CM1 at different speeds. A stronger IHI from IM1 to CM1 at PMBS peak time was demonstrated, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI from IM1 to CM1.<b>Significance Statement</b> The present study explored interhemispheric (directed)coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered a dominance of interhemispheric coherence during the PMBS period of ballistic movement. Furthermore, directed coherence from the CM1 to the IM1 was more predominant in the MRBD phase, with a reverse tendency observed during the PMBS period. Additionally, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence in ballistic movement. Advanced exploration revealed a stronger IHI from IM1 to CM1 at PMBS peak time, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0370-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Beta event-related spectral perturbation (ERSP), including bilateral movement-related beta desynchronization (MRBD) and post-movement beta synchronization (PMBS), can be evoked by unilateral speed movement. A potential correlation might exist between power (de)synchronization and interhemispheric coherence during movement execution. However, during the PMBS phase, the existence of interhemispheric coupling and the effect of speed on it are largely undiscovered. This study aimed to answer this question. In the present study, we investigated eight healthy, right-handed volunteers using a combination of electroencephalography (EEG), transcranial magnetic stimulation (TMS), and electromyography (EMG). We explored interhemispheric (directed) coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered that: (i) Compared to the MRBD period, interhemispheric coherence was greater during the PMBS period. Furthermore, ballistic movement induced a larger coherence during the PMBS period, but not during the MRBD period. (ii) In the MRBD phase, directed coherence from the contralateral motor cortex (CM1) to the ipsilateral motor cortex (IM1) was larger, with a reverse tendency observed during the PMBS period. Additionally, in ballistic movement, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence, with no effect of speed on directed coherence detected in the MRBD phase. To advance the understanding of neural mechanisms and the causality of interhemispheric coherence during the PMBS period, we investigated the interhemispheric inhibition (IHI) from IM1 to CM1 at different speeds. A stronger IHI from IM1 to CM1 at PMBS peak time was demonstrated, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI from IM1 to CM1.Significance Statement The present study explored interhemispheric (directed)coherence during isotonic right index finger abduction movements at two speeds: ballistic and self-paced. We discovered a dominance of interhemispheric coherence during the PMBS period of ballistic movement. Furthermore, directed coherence from the CM1 to the IM1 was more predominant in the MRBD phase, with a reverse tendency observed during the PMBS period. Additionally, directed coherence from IM1 to CM1 was stronger and positively correlated with coherence in ballistic movement. Advanced exploration revealed a stronger IHI from IM1 to CM1 at PMBS peak time, which was enhanced during ballistic movement. Additionally, IHI was negatively correlated with PMBS, and movement speed was positively associated with interhemispheric coupling during the PMBS period and IHI.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.