{"title":"Dynamics of RTEL1 helicase in meiotic cells: spatiotemporal distribution during prophase I in the rat Rattus norvegicus.","authors":"Sergey N Matveevsky, Yuri F Bogdanov","doi":"10.1159/000545191","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>DNA helicases are vital for preserving genome integrity and ensuring the correct process of meiosis. Despite their recognized significance, the precise roles and spatial dynamics of these enzymes during meiotic prophase I remain largely unexplored.</p><p><strong>Methods: </strong>The key methodology of this study consisted of immunocytochemical staining and statistical evaluation.</p><p><strong>Results: </strong>Our results demonstrate that RTEL1 is present in regions that have just initiated synapsis, emphasizing that chromosome synapsis is not only essential for this helicase but potentially for other proteins involved in meiotic processes. Since RTEL1 and replication protein A (RPA) were previously shown to colocalize in somatic cells, we sought to assess this relationship in meiosis. During early pachytene, when RTEL1 and RPA levels are at their peak, several immunofoci of these proteins exhibited complete or partial overlap, suggesting colocalization in some chromosomal regions, though some remained distinct. The earlier appearance of RPA in meiotic nuclei supports the notion that it may facilitate RTEL1 recruitment for DNA repair. As meiosis progresses from early pachytene to diplotene, the significant decrease in RTEL1 and RPA signals underscores their predominant involvement in early prophase I.</p><p><strong>Conclusion: </strong>This study identifies RTEL1 as the third helicase, following BLM and FANCJ, to be detected in prophase I, suggesting that additional helicases may be added to this list in the future. Its unique synapsis-dependent behavior distinguishes it from the other two helicases, which do not exhibit such a pattern. Furthermore, our findings suggest that RTEL1 can demonstrates antirecombinase activity and functions as part of the meiotic helicase complex, which regulates critical aspects of meiotic processes.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"1-17"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000545191","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: DNA helicases are vital for preserving genome integrity and ensuring the correct process of meiosis. Despite their recognized significance, the precise roles and spatial dynamics of these enzymes during meiotic prophase I remain largely unexplored.
Methods: The key methodology of this study consisted of immunocytochemical staining and statistical evaluation.
Results: Our results demonstrate that RTEL1 is present in regions that have just initiated synapsis, emphasizing that chromosome synapsis is not only essential for this helicase but potentially for other proteins involved in meiotic processes. Since RTEL1 and replication protein A (RPA) were previously shown to colocalize in somatic cells, we sought to assess this relationship in meiosis. During early pachytene, when RTEL1 and RPA levels are at their peak, several immunofoci of these proteins exhibited complete or partial overlap, suggesting colocalization in some chromosomal regions, though some remained distinct. The earlier appearance of RPA in meiotic nuclei supports the notion that it may facilitate RTEL1 recruitment for DNA repair. As meiosis progresses from early pachytene to diplotene, the significant decrease in RTEL1 and RPA signals underscores their predominant involvement in early prophase I.
Conclusion: This study identifies RTEL1 as the third helicase, following BLM and FANCJ, to be detected in prophase I, suggesting that additional helicases may be added to this list in the future. Its unique synapsis-dependent behavior distinguishes it from the other two helicases, which do not exhibit such a pattern. Furthermore, our findings suggest that RTEL1 can demonstrates antirecombinase activity and functions as part of the meiotic helicase complex, which regulates critical aspects of meiotic processes.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.