Obdulia Covarrubias-Zambrano, Deepesh Agarwal, Joan Lewis-Wambi, Raul Neri, Andrea Jewell, Balasubramaniam Natarajan, Stefan H Bossmann
{"title":"Few-Layer Graphene-Based Optical Nanobiosensors for the Early-Stage Detection of Ovarian Cancer Using Liquid Biopsy and an Active Learning Strategy.","authors":"Obdulia Covarrubias-Zambrano, Deepesh Agarwal, Joan Lewis-Wambi, Raul Neri, Andrea Jewell, Balasubramaniam Natarajan, Stefan H Bossmann","doi":"10.3390/cells14050375","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer survival depends strongly on the time of diagnosis. Detection at stage 1 must be the goal of liquid biopsies for ovarian cancer detection. We report the development and validation of graphene-based optical nanobiosensors (G-NBSs) that quantify the activities of a panel of proteases, which were selected to provide a crowd response that is specific for ovarian cancer. These G-NBSs consist of few-layer explosion graphene featuring a hydrophilic coating, which is linked to fluorescently labeled highly selective consensus sequences for the proteases of interest, as well as a fluorescent dye. The panel of G-NBSs showed statistically significant differences in protease activities when comparing localized (early-stage) ovarian cancer with both metastatic (late-stage) and healthy control groups. A hierarchical framework integrated with active learning (AL) as a prediction and analysis tool for early-stage detection of ovarian cancer was implemented, which obtained an overall accuracy score of 94.5%, with both a sensitivity and specificity of 0.94.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 5","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14050375","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer survival depends strongly on the time of diagnosis. Detection at stage 1 must be the goal of liquid biopsies for ovarian cancer detection. We report the development and validation of graphene-based optical nanobiosensors (G-NBSs) that quantify the activities of a panel of proteases, which were selected to provide a crowd response that is specific for ovarian cancer. These G-NBSs consist of few-layer explosion graphene featuring a hydrophilic coating, which is linked to fluorescently labeled highly selective consensus sequences for the proteases of interest, as well as a fluorescent dye. The panel of G-NBSs showed statistically significant differences in protease activities when comparing localized (early-stage) ovarian cancer with both metastatic (late-stage) and healthy control groups. A hierarchical framework integrated with active learning (AL) as a prediction and analysis tool for early-stage detection of ovarian cancer was implemented, which obtained an overall accuracy score of 94.5%, with both a sensitivity and specificity of 0.94.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.