PCSK9 Promotes LDLR Degradation by Preventing SNX17-Mediated LDLR Recycling.

IF 35.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
YangYang Guan, Xiaomin Liu, Zetian Yang, Xinyu Zhu, Min Liu, Mingkun Du, Xiaowei Pan, Yan Wang
{"title":"PCSK9 Promotes LDLR Degradation by Preventing SNX17-Mediated LDLR Recycling.","authors":"YangYang Guan, Xiaomin Liu, Zetian Yang, Xinyu Zhu, Min Liu, Mingkun Du, Xiaowei Pan, Yan Wang","doi":"10.1161/CIRCULATIONAHA.124.072336","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-density lipoprotein (LDL) is internalized into cells mainly through LDLR (LDL receptor)-mediated endocytosis. In an acidic endosome, LDLR is released from LDL and recycles back to the cell surface, whereas LDL is left in the endosome and degraded in the lysosome. Circulating PCSK9 (proprotein convertase subtilisin/kexin 9) binds with LDLR and is internalized into the endosome, similar to LDL. In an acidic endosome, LDLR fails to disassociate from PCSK9, and both proteins are degraded in the lysosome. PCSK9 inhibitors are widely used for treating hypercholesterolemia. However, how PCSK9 diverts LDLR to the lysosome for degradation remains elusive. Some patients are resistant to PCSK9 inhibitors, for unknown reasons.</p><p><strong>Methods: </strong>Both in vitro and in vivo approaches were used to investigate the molecular and cellular mechanisms of PCSK9-mediated LDLR degradation. LDLR containing <i>FH</i> sequence variations was expressed in <i>LDLR</i> knockout mice and knockout HuH7 cells to evaluate their response to PCSK9 and PCSK9 inhibitors.</p><p><strong>Results: </strong>Acidic pH induces a conformational change in LDLR extracellular domain and promotes its interaction with SNX17 (sorting nexin 17) through the intracellular domain. Knocking down <i>SNX17</i> abolishes LDLR recycling and causes accelerated degradation in the lysosome. PCSK9 prevents the acidic pH-induced conformational change in LDLR and blocks its interaction with SNX17. Knocking down <i>SNX17</i> abolishes PCSK9-mediated LDLR degradation. Any <i>FH</i> sequence variations that disrupt LDLR recycling are unresponsive to PCSK9 or PCSK9 inhibitors, even though they can internalize LDL.</p><p><strong>Conclusions: </strong>PCSK9 promotes LDLR degradation by preventing SNX17-mediated LDLR recycling. Patients with sequence variations in <i>FH</i> leading to defects in LDLR recycling are resistant to PCSK9 inhibitors. Genetic diagnosis and alternative drugs independent of LDLR will be needed for treatment of these patients.</p>","PeriodicalId":10331,"journal":{"name":"Circulation","volume":" ","pages":""},"PeriodicalIF":35.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCULATIONAHA.124.072336","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Low-density lipoprotein (LDL) is internalized into cells mainly through LDLR (LDL receptor)-mediated endocytosis. In an acidic endosome, LDLR is released from LDL and recycles back to the cell surface, whereas LDL is left in the endosome and degraded in the lysosome. Circulating PCSK9 (proprotein convertase subtilisin/kexin 9) binds with LDLR and is internalized into the endosome, similar to LDL. In an acidic endosome, LDLR fails to disassociate from PCSK9, and both proteins are degraded in the lysosome. PCSK9 inhibitors are widely used for treating hypercholesterolemia. However, how PCSK9 diverts LDLR to the lysosome for degradation remains elusive. Some patients are resistant to PCSK9 inhibitors, for unknown reasons.

Methods: Both in vitro and in vivo approaches were used to investigate the molecular and cellular mechanisms of PCSK9-mediated LDLR degradation. LDLR containing FH sequence variations was expressed in LDLR knockout mice and knockout HuH7 cells to evaluate their response to PCSK9 and PCSK9 inhibitors.

Results: Acidic pH induces a conformational change in LDLR extracellular domain and promotes its interaction with SNX17 (sorting nexin 17) through the intracellular domain. Knocking down SNX17 abolishes LDLR recycling and causes accelerated degradation in the lysosome. PCSK9 prevents the acidic pH-induced conformational change in LDLR and blocks its interaction with SNX17. Knocking down SNX17 abolishes PCSK9-mediated LDLR degradation. Any FH sequence variations that disrupt LDLR recycling are unresponsive to PCSK9 or PCSK9 inhibitors, even though they can internalize LDL.

Conclusions: PCSK9 promotes LDLR degradation by preventing SNX17-mediated LDLR recycling. Patients with sequence variations in FH leading to defects in LDLR recycling are resistant to PCSK9 inhibitors. Genetic diagnosis and alternative drugs independent of LDLR will be needed for treatment of these patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation
Circulation 医学-外周血管病
CiteScore
45.70
自引率
2.10%
发文量
1473
审稿时长
2 months
期刊介绍: Circulation is a platform that publishes a diverse range of content related to cardiovascular health and disease. This includes original research manuscripts, review articles, and other contributions spanning observational studies, clinical trials, epidemiology, health services, outcomes studies, and advancements in basic and translational research. The journal serves as a vital resource for professionals and researchers in the field of cardiovascular health, providing a comprehensive platform for disseminating knowledge and fostering advancements in the understanding and management of cardiovascular issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信