RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning.

IF 4.4 1区 生物学 Q1 BIOLOGY
Xiaoyong Pan, Yi Fang, Xiaojian Liu, Xiaoyu Guo, Hong-Bin Shen
{"title":"RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning.","authors":"Xiaoyong Pan, Yi Fang, Xiaojian Liu, Xiaoyu Guo, Hong-Bin Shen","doi":"10.1186/s12915-025-02182-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>RNA-binding proteins (RBPs) play crucial roles in many biological processes, and computationally identifying RNA-RBP interactions provides insights into the biological mechanism of diseases associated with RBPs.</p><p><strong>Results: </strong>To make the RBP-specific deep learning-based RBP binding sites prediction methods easily accessible, we developed an updated easy-to-use webserver, RBPsuite 2.0, with an updated web interface for predicting RBP binding sites from linear and circular RNA sequences. RBPsuite 2.0 has a higher coverage on the number of supported RBPs and species compared to the original RBPsuite, supporting an increased number of RBPs from 154 to 353 and expanding the supported species from one to seven. Additionally, RBPsuite 2.0 replaces the CRIP built into RBPsuite 1.0 with iDeepC, a more accurate RBP binding site predictor for circular RNAs. Furthermore, RBPsuite 2.0 estimates the contribution score of individual nucleotides on the input sequences as potential binding motifs and links to the UCSC browser track for better visualization of the prediction results.</p><p><strong>Conclusions: </strong>RBPsuite 2.0 is an updated, more comprehensive webserver for predicting RBP binding sites in both linear and circular RNA sequences. It supports more RBPs and species and provides more accurate predictions for circular RNAs. The tool is freely available at http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/ .</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"74"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02182-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: RNA-binding proteins (RBPs) play crucial roles in many biological processes, and computationally identifying RNA-RBP interactions provides insights into the biological mechanism of diseases associated with RBPs.

Results: To make the RBP-specific deep learning-based RBP binding sites prediction methods easily accessible, we developed an updated easy-to-use webserver, RBPsuite 2.0, with an updated web interface for predicting RBP binding sites from linear and circular RNA sequences. RBPsuite 2.0 has a higher coverage on the number of supported RBPs and species compared to the original RBPsuite, supporting an increased number of RBPs from 154 to 353 and expanding the supported species from one to seven. Additionally, RBPsuite 2.0 replaces the CRIP built into RBPsuite 1.0 with iDeepC, a more accurate RBP binding site predictor for circular RNAs. Furthermore, RBPsuite 2.0 estimates the contribution score of individual nucleotides on the input sequences as potential binding motifs and links to the UCSC browser track for better visualization of the prediction results.

Conclusions: RBPsuite 2.0 is an updated, more comprehensive webserver for predicting RBP binding sites in both linear and circular RNA sequences. It supports more RBPs and species and provides more accurate predictions for circular RNAs. The tool is freely available at http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信