AnomalGRN: deciphering single-cell gene regulation network with graph anomaly detection.

IF 4.4 1区 生物学 Q1 BIOLOGY
Zhecheng Zhou, Jinhang Wei, Mingzhe Liu, Linlin Zhuo, Xiangzheng Fu, Quan Zou
{"title":"AnomalGRN: deciphering single-cell gene regulation network with graph anomaly detection.","authors":"Zhecheng Zhou, Jinhang Wei, Mingzhe Liu, Linlin Zhuo, Xiangzheng Fu, Quan Zou","doi":"10.1186/s12915-025-02177-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) is now essential for cellular-level gene expression studies and deciphering complex gene regulatory mechanisms. Deep learning methods, when combined with scRNA-seq technology, transform gene regulation research into graph link prediction tasks. However, these methods struggle to mitigate the impact of noisy data in gene regulatory networks (GRNs) and address the significant imbalance between positive and negative links.</p><p><strong>Results: </strong>Consequently, we introduce the AnomalGRN model, focusing on heterogeneity and sparsification to elucidate complex regulatory mechanisms within GRNs. Initially, we consider gene pairs as nodes to construct new networks, thereby converting gene regulation prediction into a node prediction task. Considering the imbalance between positive and negative links in GRNs, we further adapt this issue into a graph anomaly detection (GAD) task, marking the first application of anomaly detection to GRN analysis. Introducing the cosine metric rule enables the AnomalGRN model to differentiate between homogeneity and heterogeneity among nodes in the reconstructed GRNs. The adoption of graph structure sparsification technology reduces noisy data impact and optimizes node representation.</p><p><strong>Conclusions: </strong></p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"73"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02177-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Single-cell RNA sequencing (scRNA-seq) is now essential for cellular-level gene expression studies and deciphering complex gene regulatory mechanisms. Deep learning methods, when combined with scRNA-seq technology, transform gene regulation research into graph link prediction tasks. However, these methods struggle to mitigate the impact of noisy data in gene regulatory networks (GRNs) and address the significant imbalance between positive and negative links.

Results: Consequently, we introduce the AnomalGRN model, focusing on heterogeneity and sparsification to elucidate complex regulatory mechanisms within GRNs. Initially, we consider gene pairs as nodes to construct new networks, thereby converting gene regulation prediction into a node prediction task. Considering the imbalance between positive and negative links in GRNs, we further adapt this issue into a graph anomaly detection (GAD) task, marking the first application of anomaly detection to GRN analysis. Introducing the cosine metric rule enables the AnomalGRN model to differentiate between homogeneity and heterogeneity among nodes in the reconstructed GRNs. The adoption of graph structure sparsification technology reduces noisy data impact and optimizes node representation.

Conclusions:

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信