Individual and integrated indexes of inflammation predicting the risks of mental disorders - statistical analysis and artificial neural network.

IF 3.4 2区 医学 Q2 PSYCHIATRY
Shu-Min Huang, Fu-Hsing Wu, Kai-Jie Ma, Jong-Yi Wang
{"title":"Individual and integrated indexes of inflammation predicting the risks of mental disorders - statistical analysis and artificial neural network.","authors":"Shu-Min Huang, Fu-Hsing Wu, Kai-Jie Ma, Jong-Yi Wang","doi":"10.1186/s12888-025-06652-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The prevalence of mental illness in Taiwan increased. Identifying and mitigating risk factors for mental illness is essential. Inflammation may be a risk factor for mental illness; however, the predictive power of inflammation test values is unclear. Artificial intelligence can predict the risk of disease. This study was the first to conduct risk prediction based on the combination of individual inflammation test values.</p><p><strong>Methods: </strong>A retrospective longitudinal design was adopted to analyze data obtained from a medical center. Patients were enrolled if they had received blood tests for inflammation. Propensity score matching was employed for within-group comparisons. A total of 231,306 patients were enrolled. A deep neural network model was employed to establish a predictive model.</p><p><strong>Results: </strong>Among inflammation markers, high-sensitivity C-reactive protein concentrations were associated with the greatest risk of mental illness (37.45%), followed by the combination of individual inflammation test values (32.21%). The more abnormal a participant's inflammation values were, the higher the risk of mental illness (aHR = 1.301, p <.001). Specifically, high-sensitivity C-reactive protein concentration was the most indicative marker for predicting mental illness. Inflammation markers exhibited certain correlations with the type of mental illness. When the same variables were considered, statistical analysis and the deep neural network had similar results. After feature extraction was incorporated, the performance of the deep neural network model improved (excellent, area under the curve = 0.9162) and could effectively predict the risk of mental illness.</p><p><strong>Conclusion: </strong>Inflammation values could predict the risk of developing mental illnesses in general and the risk of developing certain types of mental illness.</p>","PeriodicalId":9029,"journal":{"name":"BMC Psychiatry","volume":"25 1","pages":"226"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12888-025-06652-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The prevalence of mental illness in Taiwan increased. Identifying and mitigating risk factors for mental illness is essential. Inflammation may be a risk factor for mental illness; however, the predictive power of inflammation test values is unclear. Artificial intelligence can predict the risk of disease. This study was the first to conduct risk prediction based on the combination of individual inflammation test values.

Methods: A retrospective longitudinal design was adopted to analyze data obtained from a medical center. Patients were enrolled if they had received blood tests for inflammation. Propensity score matching was employed for within-group comparisons. A total of 231,306 patients were enrolled. A deep neural network model was employed to establish a predictive model.

Results: Among inflammation markers, high-sensitivity C-reactive protein concentrations were associated with the greatest risk of mental illness (37.45%), followed by the combination of individual inflammation test values (32.21%). The more abnormal a participant's inflammation values were, the higher the risk of mental illness (aHR = 1.301, p <.001). Specifically, high-sensitivity C-reactive protein concentration was the most indicative marker for predicting mental illness. Inflammation markers exhibited certain correlations with the type of mental illness. When the same variables were considered, statistical analysis and the deep neural network had similar results. After feature extraction was incorporated, the performance of the deep neural network model improved (excellent, area under the curve = 0.9162) and could effectively predict the risk of mental illness.

Conclusion: Inflammation values could predict the risk of developing mental illnesses in general and the risk of developing certain types of mental illness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Psychiatry
BMC Psychiatry 医学-精神病学
CiteScore
5.90
自引率
4.50%
发文量
716
审稿时长
3-6 weeks
期刊介绍: BMC Psychiatry is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of psychiatric disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信