Develop and validate machine learning models to predict the risk of depressive symptoms in older adults with cognitive impairment.

IF 3.4 2区 医学 Q2 PSYCHIATRY
Enguang Li, Fangzhu Ai, Qingyan Tian, Haocheng Yang, Ping Tang, Botang Guo
{"title":"Develop and validate machine learning models to predict the risk of depressive symptoms in older adults with cognitive impairment.","authors":"Enguang Li, Fangzhu Ai, Qingyan Tian, Haocheng Yang, Ping Tang, Botang Guo","doi":"10.1186/s12888-025-06657-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cognitive impairment and depressive symptoms are prevalent and closely interrelated mental health issues in the elderly. Traditional methods for identifying depressive symptoms in this population often lack effectiveness. Machine learning provides a promising alternative for developing predictive models that can facilitate early identification and intervention.</p><p><strong>Methods: </strong>This study utilized data from 945 participants aged 60 years and older with cognitive impairment, sourced from National Health and Nutrition Examination Surveys (2011-2014). Depressive symptoms were assessed using the Patient Health Questionnaire-9. Lasso regression was applied for feature selection, ensuring consistency across models. Several machine learning models, including XGBoost, Logistic Regression, Random Forest, and SVM, were trained and evaluated. Model performance was assessed using accuracy, precision, recall, F1 score, and AUC.</p><p><strong>Results: </strong>The incidence of depressive symptoms in older adults with cognitive impairment was 14.07%. Key predictors identified by lasso included general health, memory difficulties, and age, among others. Notably, general health emerged as a novel and significant predictor in this population, underscoring the interplay between physical and mental health. XGBoost was the best model for comprehensively comparing discrimination, calibration, and clinical utility.</p><p><strong>Conclusions: </strong>Machine learning models, particularly XGBoost, effectively predict depressive symptoms in cognitively impaired older adults. The findings highlight the importance of physical, cognitive, and social factors in depressive symptoms risk. These models have the potential to assist in early screening and intervention, improving patient outcomes. Future research should explore ways to enhance model generalizability, including the use of clinically diagnosed depressive symptoms data and alternative feature selection approaches.</p>","PeriodicalId":9029,"journal":{"name":"BMC Psychiatry","volume":"25 1","pages":"219"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12888-025-06657-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cognitive impairment and depressive symptoms are prevalent and closely interrelated mental health issues in the elderly. Traditional methods for identifying depressive symptoms in this population often lack effectiveness. Machine learning provides a promising alternative for developing predictive models that can facilitate early identification and intervention.

Methods: This study utilized data from 945 participants aged 60 years and older with cognitive impairment, sourced from National Health and Nutrition Examination Surveys (2011-2014). Depressive symptoms were assessed using the Patient Health Questionnaire-9. Lasso regression was applied for feature selection, ensuring consistency across models. Several machine learning models, including XGBoost, Logistic Regression, Random Forest, and SVM, were trained and evaluated. Model performance was assessed using accuracy, precision, recall, F1 score, and AUC.

Results: The incidence of depressive symptoms in older adults with cognitive impairment was 14.07%. Key predictors identified by lasso included general health, memory difficulties, and age, among others. Notably, general health emerged as a novel and significant predictor in this population, underscoring the interplay between physical and mental health. XGBoost was the best model for comprehensively comparing discrimination, calibration, and clinical utility.

Conclusions: Machine learning models, particularly XGBoost, effectively predict depressive symptoms in cognitively impaired older adults. The findings highlight the importance of physical, cognitive, and social factors in depressive symptoms risk. These models have the potential to assist in early screening and intervention, improving patient outcomes. Future research should explore ways to enhance model generalizability, including the use of clinically diagnosed depressive symptoms data and alternative feature selection approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Psychiatry
BMC Psychiatry 医学-精神病学
CiteScore
5.90
自引率
4.50%
发文量
716
审稿时长
3-6 weeks
期刊介绍: BMC Psychiatry is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of psychiatric disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信