Gut microbiome reveals the trophic variation and significant adaption of three sympatric forest-dwelling ungulates on the eastern Qinghai-Xizang Plateau.
Haonan Zhang, Yichen Wang, Zhengwei Luo, Baofeng Zhang, Xianna Lan, Liancheng Xu, Xuxin Li, Zhixin Huang, Jin Bai, Defu Hu
{"title":"Gut microbiome reveals the trophic variation and significant adaption of three sympatric forest-dwelling ungulates on the eastern Qinghai-Xizang Plateau.","authors":"Haonan Zhang, Yichen Wang, Zhengwei Luo, Baofeng Zhang, Xianna Lan, Liancheng Xu, Xuxin Li, Zhixin Huang, Jin Bai, Defu Hu","doi":"10.1186/s12866-025-03812-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut microbiome of herbivorous mammals regulates numerous physiological processes, including digestion and energy metabolism. The complex stomach architecture of ruminants, in conjunction with the metabolic capabilities of their microbiota, confers a considerable adaptive advantage to these animals. Nevertheless, a significant gap persists in comparative studies on the variations in the gut microbiome among sympatric ruminants and their potential adaptive implications. Accordingly, in this study, 16S rRNA gene sequencing and metagenomic approaches were used to analyse the composition and functional attributes of the gut microbiome of sympatric Moschus chrysogaster, Capricornis sumatraensis, and Cervus albirostris inhabiting the eastern periphery of the Qinghai-Xizang Plateau.</p><p><strong>Results: </strong>The gut microbiome of C. albirostris exhibited a higher diversity than that of M. chrysogaster and C. sumatraensis, whereas those of M. chrysogaster and C. sumatraensis were similar. Although species-specific variations existed among the three mammalian microbiomes, the microbiomes of C. albirostris and C. sumatraensis were more similar, whereas that of M. chrysogaster was markedly distinct. Metagenomic analysis revealed a pattern of functional convergence in the gut microbiome of the three species, with the gut microbiome of C. albirostris exhibiting a pronounced emphasis on carbohydrate metabolism, significantly surpassing that of M. chrysogaster and C. sumatraensis. Compared to the other two species, the gut microbiome of C. sumatraensis presented significantly elevated levels of amino acids and energy metabolism, whereas that of M. chrysogaster presented an increased capacity for 3-hydroxyacyl- [acyl carrier protein]-dehydratase production.</p><p><strong>Conclusion: </strong>These findings suggest that the gut microbiome of sympatric M. chrysogaster, C. sumatraensis, and C. albirostris tend to converge. Metabolic variations within their gut microbiome may result in differential food resource utilisation, potentially indicating significant nutritional and ecological trait characteristics for stable coexistence.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"128"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03812-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The gut microbiome of herbivorous mammals regulates numerous physiological processes, including digestion and energy metabolism. The complex stomach architecture of ruminants, in conjunction with the metabolic capabilities of their microbiota, confers a considerable adaptive advantage to these animals. Nevertheless, a significant gap persists in comparative studies on the variations in the gut microbiome among sympatric ruminants and their potential adaptive implications. Accordingly, in this study, 16S rRNA gene sequencing and metagenomic approaches were used to analyse the composition and functional attributes of the gut microbiome of sympatric Moschus chrysogaster, Capricornis sumatraensis, and Cervus albirostris inhabiting the eastern periphery of the Qinghai-Xizang Plateau.
Results: The gut microbiome of C. albirostris exhibited a higher diversity than that of M. chrysogaster and C. sumatraensis, whereas those of M. chrysogaster and C. sumatraensis were similar. Although species-specific variations existed among the three mammalian microbiomes, the microbiomes of C. albirostris and C. sumatraensis were more similar, whereas that of M. chrysogaster was markedly distinct. Metagenomic analysis revealed a pattern of functional convergence in the gut microbiome of the three species, with the gut microbiome of C. albirostris exhibiting a pronounced emphasis on carbohydrate metabolism, significantly surpassing that of M. chrysogaster and C. sumatraensis. Compared to the other two species, the gut microbiome of C. sumatraensis presented significantly elevated levels of amino acids and energy metabolism, whereas that of M. chrysogaster presented an increased capacity for 3-hydroxyacyl- [acyl carrier protein]-dehydratase production.
Conclusion: These findings suggest that the gut microbiome of sympatric M. chrysogaster, C. sumatraensis, and C. albirostris tend to converge. Metabolic variations within their gut microbiome may result in differential food resource utilisation, potentially indicating significant nutritional and ecological trait characteristics for stable coexistence.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.