Fast and efficient Sb-based type-II phototransistors integrated on silicon.

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2025-03-01 Epub Date: 2025-03-03 DOI:10.1063/5.0233887
Lining Liu, Simone Bianconi, Skyler Wheaton, Nathaniel Coirier, Farah Fahim, Hooman Mohseni
{"title":"Fast and efficient Sb-based type-II phototransistors integrated on silicon.","authors":"Lining Liu, Simone Bianconi, Skyler Wheaton, Nathaniel Coirier, Farah Fahim, Hooman Mohseni","doi":"10.1063/5.0233887","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing the energy efficiency and reducing the footprint of on-chip photodetectors enable dense optical interconnects for emerging computational and sensing applications. While heterojunction phototransistors (HPTs) exhibit high energy efficiency and negligible excess noise factor, their gain-bandwidth product (GBP) has been inferior to that of avalanche photodiodes at low optical powers. Here, we demonstrate that utilizing type-II energy band alignment in an Sb-based HPT results in six times smaller junction capacitance per unit area and a significantly higher GBP at low optical powers. These type-II HPTs were scaled down to 2 <i>μ</i>m in diameter and fully integrated with photonic waveguides on silicon. Thanks to their extremely low dark current and high internal gain, these devices exhibit a GBP similar to the best avalanche devices (∼270 GHz) but with one order of magnitude better energy efficiency. Their energy consumption is about 5 fJ/bit at 3.2 Gbps, with an error rate below 10<sup>-9</sup> at -25 dBm optical power at 1550 nm. These features suggest new opportunities for creating highly efficient and compact optical receivers based on phototransistors with type-II band alignment.</p>","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"10 3","pages":"036106"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0233887","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing the energy efficiency and reducing the footprint of on-chip photodetectors enable dense optical interconnects for emerging computational and sensing applications. While heterojunction phototransistors (HPTs) exhibit high energy efficiency and negligible excess noise factor, their gain-bandwidth product (GBP) has been inferior to that of avalanche photodiodes at low optical powers. Here, we demonstrate that utilizing type-II energy band alignment in an Sb-based HPT results in six times smaller junction capacitance per unit area and a significantly higher GBP at low optical powers. These type-II HPTs were scaled down to 2 μm in diameter and fully integrated with photonic waveguides on silicon. Thanks to their extremely low dark current and high internal gain, these devices exhibit a GBP similar to the best avalanche devices (∼270 GHz) but with one order of magnitude better energy efficiency. Their energy consumption is about 5 fJ/bit at 3.2 Gbps, with an error rate below 10-9 at -25 dBm optical power at 1550 nm. These features suggest new opportunities for creating highly efficient and compact optical receivers based on phototransistors with type-II band alignment.

快速高效的硅基ii型光电晶体管。
提高能源效率和减少片上光电探测器的占地面积,为新兴的计算和传感应用实现密集的光学互连。虽然异质结光电晶体管(hpt)具有高能量效率和可忽略的多余噪声因子,但其增益带宽积(GBP)在低光功率下不如雪崩光电二极管。在这里,我们证明了在基于sb的HPT中使用ii型能带对准可以使单位面积的结电容减小六倍,并且在低光功率下显着提高GBP。这些ii型hpt被缩小到直径2 μm,并与硅上的光子波导完全集成。由于其极低的暗电流和高内部增益,这些器件表现出与最佳雪崩器件(~ 270 GHz)相似的GBP,但具有一个数量级的能效。在3.2 Gbps下,其能耗约为5 fJ/bit,在1550 nm光功率为-25 dBm时,误差率低于10-9。这些特征为基于ii型波段对准的光电晶体管创造高效紧凑的光学接收器提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信