GSK3 coordinately regulates mitochondrial activity and nucleotide metabolism in quiescent oocytes.

IF 1.8 4区 生物学 Q3 BIOLOGY
Biology Open Pub Date : 2025-03-06 DOI:10.1242/bio.061815
Leah Eller, Lei Wang, Mehmet Oguz Gok, Helin Hocaoglu, Shenlu Qin, Parul Gupta, Matthew H Sieber
{"title":"GSK3 coordinately regulates mitochondrial activity and nucleotide metabolism in quiescent oocytes.","authors":"Leah Eller, Lei Wang, Mehmet Oguz Gok, Helin Hocaoglu, Shenlu Qin, Parul Gupta, Matthew H Sieber","doi":"10.1242/bio.061815","DOIUrl":null,"url":null,"abstract":"<p><p>As cells transition between periods of growth and quiescence, their metabolic demands change. During this transition, cells must coordinate changes in mitochondrial function with the induction of biosynthetic processes. Mitochondrial metabolism and nucleotide biosynthesis are key rate-limiting factors in regulating early growth. However, it remains unclear what coordinates these mechanisms in developmental systems. Here, we show that during quiescence, as mitochondrial activity drops, nucleotide breakdown increases. However, at fertilization, mitochondrial oxidative metabolism and nucleotide biosynthesis are coordinately activated to support early embryogenesis. We have found that the serine/threonine kinase GSK3 is a key factor in coordinating mitochondrial metabolism with nucleotide biosynthesis during transitions between quiescence and growth. Silencing GSK3 in quiescent oocytes causes increased levels of mitochondrial activity and a shift in the levels of several redox metabolites. Interestingly, silencing GSK3 in quiescent oocytes also leads to a precocious induction of nucleotide biosynthesis in quiescent oocytes. Taken together, these data indicate that GSK3 functions to suppress mitochondrial oxidative metabolism and prevent the premature onset of nucleotide biosynthesis in quiescent eggs. These data reveal a key mechanism that coordinates mitochondrial function and nucleotide synthesis with fertilization.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061815","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As cells transition between periods of growth and quiescence, their metabolic demands change. During this transition, cells must coordinate changes in mitochondrial function with the induction of biosynthetic processes. Mitochondrial metabolism and nucleotide biosynthesis are key rate-limiting factors in regulating early growth. However, it remains unclear what coordinates these mechanisms in developmental systems. Here, we show that during quiescence, as mitochondrial activity drops, nucleotide breakdown increases. However, at fertilization, mitochondrial oxidative metabolism and nucleotide biosynthesis are coordinately activated to support early embryogenesis. We have found that the serine/threonine kinase GSK3 is a key factor in coordinating mitochondrial metabolism with nucleotide biosynthesis during transitions between quiescence and growth. Silencing GSK3 in quiescent oocytes causes increased levels of mitochondrial activity and a shift in the levels of several redox metabolites. Interestingly, silencing GSK3 in quiescent oocytes also leads to a precocious induction of nucleotide biosynthesis in quiescent oocytes. Taken together, these data indicate that GSK3 functions to suppress mitochondrial oxidative metabolism and prevent the premature onset of nucleotide biosynthesis in quiescent eggs. These data reveal a key mechanism that coordinates mitochondrial function and nucleotide synthesis with fertilization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信