{"title":"Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture.","authors":"Diksha Malik, Satish Kumar, Satyavir S Sindhu","doi":"10.1007/s13205-025-04243-3","DOIUrl":null,"url":null,"abstract":"<p><p>Several beneficial microbial strains inhibit the growth of different phytopathogens and commercialized worldwide as biocontrol agents (BCAs) for plant disease management. These BCAs employ different strategies for growth inhibition of pathogens, which includes production of antibiotics, siderophores, lytic enzymes, bacteriocins, hydrogen cyanide, volatile organic compounds, biosurfactants and induction of systemic resistance. The efficacy of antagonistic strains could be further improved through genetic engineering for better disease suppression in sustainable farming practices. Some antagonistic microbial strains also possess plant-growth-promoting activities and their inoculation improved plant growth in addition to disease suppression. This review discusses the characterization of antagonistic microbes and their antimicrobial metabolites, and the application of these BCAs for disease control. The present review also provides a comprehensive summary of the genetic organization and regulation of the biosynthesis of different antimicrobial metabolites in antagonistic strains. Use of molecular engineering to improve production of metabolites in BCAs and their efficacy in disease control is also discussed. The application of these biopesticides will reduce use of conventional pesticides in disease control and help in achieving sustainable and eco-friendly agricultural systems.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"82"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04243-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several beneficial microbial strains inhibit the growth of different phytopathogens and commercialized worldwide as biocontrol agents (BCAs) for plant disease management. These BCAs employ different strategies for growth inhibition of pathogens, which includes production of antibiotics, siderophores, lytic enzymes, bacteriocins, hydrogen cyanide, volatile organic compounds, biosurfactants and induction of systemic resistance. The efficacy of antagonistic strains could be further improved through genetic engineering for better disease suppression in sustainable farming practices. Some antagonistic microbial strains also possess plant-growth-promoting activities and their inoculation improved plant growth in addition to disease suppression. This review discusses the characterization of antagonistic microbes and their antimicrobial metabolites, and the application of these BCAs for disease control. The present review also provides a comprehensive summary of the genetic organization and regulation of the biosynthesis of different antimicrobial metabolites in antagonistic strains. Use of molecular engineering to improve production of metabolites in BCAs and their efficacy in disease control is also discussed. The application of these biopesticides will reduce use of conventional pesticides in disease control and help in achieving sustainable and eco-friendly agricultural systems.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.