Yangji Cidan, Jia Wang, Hongzhuang Wang, Chang Xu, Yanbin Zhu, Muhammad Kasib Khan, Wangdui Basang, Kun Li
{"title":"Composition and diversity of rumen mycobiota in Jiani yaks (<i>Bos grunniens</i> jiani): insights into microbial ecology and functions.","authors":"Yangji Cidan, Jia Wang, Hongzhuang Wang, Chang Xu, Yanbin Zhu, Muhammad Kasib Khan, Wangdui Basang, Kun Li","doi":"10.1080/10495398.2025.2476539","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to explore the diversity and functions of rumen mycobiota in 14‑ (PLf) and 15‑rib (DLf) Jiani yaks using ITS sequencing. A total of 1,079,105 and 1,086,799 filtered sequences were obtained for the PLf and DLf groups, respectively, with 491 ASVs common to both. No significant difference regarding the α‑diversity of mycobiota within the two groups was observed. While β‑diversity analysis indicated that the abundance of fifteen (15) genera in the PLf group and two (2) genera in the DLf group was found to be significantly different (p < 0.05). 16S rRNA sequencing results indicated that at the phylum level, in 14 ribs yaks Ascomycota, Basidiomycota, and Olpidiomycota, while in 15 rib yaks, Neocallimastigomycota, Mortierellomycota, and Rozellomycota were found to be significantly different (<i>p < 0.05</i>). At the genus level, <i>Rhodotorula</i>, <i>Kluyveromyces</i>, <i>Comoclathris</i>, <i>Arthrinium</i>, <i>Cladophialophora</i>, <i>Seimatosporium</i>, <i>Lambertella,</i> and <i>Sphacelotheca</i> in 14 rib yaks, and <i>Orpinomyces, Ustilago</i>, <i>Fusarium, Aspergillus, Caecomyces, Alternaria, Trichoderma</i> and <i>Acremonium</i> in 15 rib yaks were found to be significantly (<i>p < 0.05</i>) different. Predictive functional analysis based on ruminal fungal DNA sequences from 15‑rib yaks (DLf) demonstrated that genes involved in energy metabolism were upregulated. This study sheds novel insights into how genetic variations influence gut mycobiota in Jiani yak.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2476539"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2476539","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to explore the diversity and functions of rumen mycobiota in 14‑ (PLf) and 15‑rib (DLf) Jiani yaks using ITS sequencing. A total of 1,079,105 and 1,086,799 filtered sequences were obtained for the PLf and DLf groups, respectively, with 491 ASVs common to both. No significant difference regarding the α‑diversity of mycobiota within the two groups was observed. While β‑diversity analysis indicated that the abundance of fifteen (15) genera in the PLf group and two (2) genera in the DLf group was found to be significantly different (p < 0.05). 16S rRNA sequencing results indicated that at the phylum level, in 14 ribs yaks Ascomycota, Basidiomycota, and Olpidiomycota, while in 15 rib yaks, Neocallimastigomycota, Mortierellomycota, and Rozellomycota were found to be significantly different (p < 0.05). At the genus level, Rhodotorula, Kluyveromyces, Comoclathris, Arthrinium, Cladophialophora, Seimatosporium, Lambertella, and Sphacelotheca in 14 rib yaks, and Orpinomyces, Ustilago, Fusarium, Aspergillus, Caecomyces, Alternaria, Trichoderma and Acremonium in 15 rib yaks were found to be significantly (p < 0.05) different. Predictive functional analysis based on ruminal fungal DNA sequences from 15‑rib yaks (DLf) demonstrated that genes involved in energy metabolism were upregulated. This study sheds novel insights into how genetic variations influence gut mycobiota in Jiani yak.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes