Modification of Transparent Polyimide with High Aspect Ratio Nanowires to Simultaneously Improve the Thermal Conductivity, Haze, and Mechanical Properties.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Chaohua Peng, Xinjie Ma, Mengting Wei, Conghui Yuan, Yiting Xu, Birong Zeng, Guorong Chen, Weiang Luo, Lizong Dai
{"title":"Modification of Transparent Polyimide with High Aspect Ratio Nanowires to Simultaneously Improve the Thermal Conductivity, Haze, and Mechanical Properties.","authors":"Chaohua Peng, Xinjie Ma, Mengting Wei, Conghui Yuan, Yiting Xu, Birong Zeng, Guorong Chen, Weiang Luo, Lizong Dai","doi":"10.1002/marc.202401040","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the high light transmittance and high haze thermally conductive polyimide film with excellent comprehensive performance exhibits great application prospects, while there are still challenges for achieving. Here, boehmite nanowires (BhNs) with an aspect ratio up to 60 for the modification of transparent polyimide (CPI) derived from the polymerization of fluorodiamine and fluorodianhydride, are prepared. Due to the unique size and orientation distribution of BhNs in CPI films, the as prepared CPI-BhN composite films show in-plane thermal conductivity up to 5.89 W m<sup>-1</sup> K<sup>-1</sup>, which is almost an order of magnitude higher than that of pure CPI (0.626 W m<sup>-1</sup> K<sup>-1</sup>). Meantime, optimal CPI-BhN composite films show a light transmittance of 52.9% at 550 nm and a haze of 35.3%. In addition, the BhNs form a strong hydrogen bond with the CPI polymer chains, enhancing the mechanical properties of the composite films. Studies on thermal stability, fatigue resistance, and flame retardancy indicate that the CPI-BhN composite films have excellent performances. These findings provide a new idea for the design and fabrication of high-performance composite films for new-generation optoelectronic devices.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401040"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401040","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the high light transmittance and high haze thermally conductive polyimide film with excellent comprehensive performance exhibits great application prospects, while there are still challenges for achieving. Here, boehmite nanowires (BhNs) with an aspect ratio up to 60 for the modification of transparent polyimide (CPI) derived from the polymerization of fluorodiamine and fluorodianhydride, are prepared. Due to the unique size and orientation distribution of BhNs in CPI films, the as prepared CPI-BhN composite films show in-plane thermal conductivity up to 5.89 W m-1 K-1, which is almost an order of magnitude higher than that of pure CPI (0.626 W m-1 K-1). Meantime, optimal CPI-BhN composite films show a light transmittance of 52.9% at 550 nm and a haze of 35.3%. In addition, the BhNs form a strong hydrogen bond with the CPI polymer chains, enhancing the mechanical properties of the composite films. Studies on thermal stability, fatigue resistance, and flame retardancy indicate that the CPI-BhN composite films have excellent performances. These findings provide a new idea for the design and fabrication of high-performance composite films for new-generation optoelectronic devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信