MSI1 Accelerates Prostate Cancer Cell Proliferation, Migration and Glycolysis by Promoting ABHD2 Transcription.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dingping Huang, Qingqi Zheng, Liying Zhou
{"title":"MSI1 Accelerates Prostate Cancer Cell Proliferation, Migration and Glycolysis by Promoting ABHD2 Transcription.","authors":"Dingping Huang, Qingqi Zheng, Liying Zhou","doi":"10.1007/s10528-025-11079-2","DOIUrl":null,"url":null,"abstract":"<p><p>Musashi-1 (MSI1) has been proposed as a potential prognostic biomarker in prostate cancer (PCa), but its role and underlying molecular mechanisms in PCa progression remain unclear. The mRNA and protein levels of MSI1 and α/β-hydrolase domain 2 (ABHD2) in PCa tissues and cells were examined using qRT-PCR and western blot. Cell proliferation, cycle, apoptosis, and migration were detected by EdU assay, flow cytometry and transwell assay. Glucose uptake and lactate production were assessed to measure cell glycolysis. The interaction between SP1 and PLA2G6 was evaluated using dual-luciferase reporter assay and ChIP assay. MSI1 had increased expression in PCa tissues and cells. MSI1 downregulation could repress PCa cell proliferation, cycle, migration, glycolysis, and enhanced apoptosis. ABHD2 was upregulated in PCa tissues and cells, and MSI1 could bind to ABHD2 promoter region to increase its expression. Knockdown of ABHD2 suppressed PCa cell growth, migration and glycolysis, and ABHD2 overexpression also abolished the effect of MSI1 downregulation on PCa cell progression. Furthermore, interference of MSI1 reduced PCa tumor growth by decreasing ABHD2 expression in vivo. MSI1 facilitated PCa cell proliferation, migration and glycolysis via activating ABHD2 transcription, providing a novel target for PCa treatment.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11079-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Musashi-1 (MSI1) has been proposed as a potential prognostic biomarker in prostate cancer (PCa), but its role and underlying molecular mechanisms in PCa progression remain unclear. The mRNA and protein levels of MSI1 and α/β-hydrolase domain 2 (ABHD2) in PCa tissues and cells were examined using qRT-PCR and western blot. Cell proliferation, cycle, apoptosis, and migration were detected by EdU assay, flow cytometry and transwell assay. Glucose uptake and lactate production were assessed to measure cell glycolysis. The interaction between SP1 and PLA2G6 was evaluated using dual-luciferase reporter assay and ChIP assay. MSI1 had increased expression in PCa tissues and cells. MSI1 downregulation could repress PCa cell proliferation, cycle, migration, glycolysis, and enhanced apoptosis. ABHD2 was upregulated in PCa tissues and cells, and MSI1 could bind to ABHD2 promoter region to increase its expression. Knockdown of ABHD2 suppressed PCa cell growth, migration and glycolysis, and ABHD2 overexpression also abolished the effect of MSI1 downregulation on PCa cell progression. Furthermore, interference of MSI1 reduced PCa tumor growth by decreasing ABHD2 expression in vivo. MSI1 facilitated PCa cell proliferation, migration and glycolysis via activating ABHD2 transcription, providing a novel target for PCa treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信