Oxygen enhanced plasma discharge and its application as carrier gas for high-field asymmetric ion mobility spectroscopy.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-03-11 DOI:10.1007/s00216-025-05799-y
Hua Li, Yuqiao Zhang, Xiaoxia Du, Wenxiang Xiao
{"title":"Oxygen enhanced plasma discharge and its application as carrier gas for high-field asymmetric ion mobility spectroscopy.","authors":"Hua Li, Yuqiao Zhang, Xiaoxia Du, Wenxiang Xiao","doi":"10.1007/s00216-025-05799-y","DOIUrl":null,"url":null,"abstract":"<p><p>This paper explores the application of a helium-oxygen mixture in gas curtain plasma ion source (GCP)-high-field asymmetric ion mobility spectroscopy (FAIMS). A gas mixture of oxygen and helium gases has been employed as the discharge gas. The experiments were conducted using 2-butanone, acetone, methanol, and ethanol as the sample under a radio frequency field strength of 20.3 kV/cm. When the flow rate of the discharge gas is fixed at 0.8 L/min and the helium oxygen mixture ratio is fixed at 7:1, the maximum ion signal can be obtained. With the flow rate of the carrier gas fixed at 1.2 L/min, using 100% oxygen as the carrier gas resulted in a 2.85-fold increase in signal intensity and a 72.67-fold improvement in resolution compared to a mixture of oxygen and nitrogen, as well as 100% nitrogen. Therefore, adding oxygen can not only improve the detection sensitivity of FAIMS, but also enhance its resolution.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"2111-2120"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05799-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the application of a helium-oxygen mixture in gas curtain plasma ion source (GCP)-high-field asymmetric ion mobility spectroscopy (FAIMS). A gas mixture of oxygen and helium gases has been employed as the discharge gas. The experiments were conducted using 2-butanone, acetone, methanol, and ethanol as the sample under a radio frequency field strength of 20.3 kV/cm. When the flow rate of the discharge gas is fixed at 0.8 L/min and the helium oxygen mixture ratio is fixed at 7:1, the maximum ion signal can be obtained. With the flow rate of the carrier gas fixed at 1.2 L/min, using 100% oxygen as the carrier gas resulted in a 2.85-fold increase in signal intensity and a 72.67-fold improvement in resolution compared to a mixture of oxygen and nitrogen, as well as 100% nitrogen. Therefore, adding oxygen can not only improve the detection sensitivity of FAIMS, but also enhance its resolution.

氧增强等离子体放电及其作为载气在高场不对称离子迁移谱中的应用。
本文探讨了氦氧混合物在气幕等离子体离子源(GCP)-高场不对称离子迁移谱(FAIMS)中的应用。氧气和氦气的混合物被用作放电气体。实验以2-丁酮、丙酮、甲醇和乙醇为样品,在20.3 kV/cm的射频场强下进行。当放电气体流量固定为0.8 L/min,氦气氧混合比固定为7:1时,可获得最大离子信号。在载气流速固定为1.2 L/min的情况下,与氧气和氮气混合以及100%氮气相比,使用100%氧气作为载气的信号强度增加了2.85倍,分辨率提高了72.67倍。因此,添加氧气不仅可以提高FAIMS的检测灵敏度,还可以提高其分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信