Antifouling Coatings Inspired by Biological Templates.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Catherine Doyle, Marya Ahmed
{"title":"Antifouling Coatings Inspired by Biological Templates.","authors":"Catherine Doyle, Marya Ahmed","doi":"10.1002/marc.202400932","DOIUrl":null,"url":null,"abstract":"<p><p>Surface fouling is a major concern in health care, marine industry, and water purification plants. Polymeric coatings are traditionally utilized to reduce the attachment of foulants on a surface, however low density and thickness of polymer brushes formed by surface initiated polymerization methods, surface exhaustion by continuous exposure to the foulants, and mechanical vulnerability in harsh environments, limit the antifouling performance of these traditional coatings. Recent trends in bioinspired polymeric coatings combine antifouling properties of super-hydrophobic, and highly hydrated lubricating polymers with mechanical properties of micro- and nano-particles to yield contact active, foulant releasable and stimuli responsive materials with superior antifouling performance. This review specifically highlights the development of next generation bioactive antifouling coatings using nature as an inspiration and a discussion of their benefits, over traditional polymeric coatings. The bioinspired coatings obtained are further evaluated for their potential applications in the marine environment, as delivery carriers, in implants, biosensors, and in urinary catheters.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400932"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400932","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Surface fouling is a major concern in health care, marine industry, and water purification plants. Polymeric coatings are traditionally utilized to reduce the attachment of foulants on a surface, however low density and thickness of polymer brushes formed by surface initiated polymerization methods, surface exhaustion by continuous exposure to the foulants, and mechanical vulnerability in harsh environments, limit the antifouling performance of these traditional coatings. Recent trends in bioinspired polymeric coatings combine antifouling properties of super-hydrophobic, and highly hydrated lubricating polymers with mechanical properties of micro- and nano-particles to yield contact active, foulant releasable and stimuli responsive materials with superior antifouling performance. This review specifically highlights the development of next generation bioactive antifouling coatings using nature as an inspiration and a discussion of their benefits, over traditional polymeric coatings. The bioinspired coatings obtained are further evaluated for their potential applications in the marine environment, as delivery carriers, in implants, biosensors, and in urinary catheters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信