{"title":"Sphingobium yanoikuyae 41R9 Enhances Nitrogen Uptake by Modulating Transporter Genes and Root Development in Rapeseed.","authors":"Youqiang Wang, Donglin Zhao, Zhe Li, Han Zheng, Yiqiang Li, Yanfen Zheng, Cheng-Sheng Zhang","doi":"10.1111/pce.15471","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth-promoting rhizobacteria (PGPR) are widely recognized for enhancing the absorption of mineral nutrients by crops. While Sphingobium species have been reported as PGPRs, their capacity to improve nitrogen use efficiency (NUE) and the underlying regulatory mechanisms are not yet fully understood. Here, a strain 41R9, isolated from the rhizosphere of N-deficient rapeseed, was found to significantly enhance the growth performance of rapeseed under both low and normal N conditions. Genomic analysis revealed that strain 41R9 was closely related to Sphingobium yanoikuyae. <sup>15</sup>N isotope tracer experiments confirmed that inoculation with strain 41R9 significantly boosted N uptake and translocation in rapeseed roots. Transcriptome profiling demonstrated that strain 41R9 directly upregulated N transporter genes (NRT2.5 and SLAH1/3), facilitating efficient N acquisition. Furthermore, strain 41R9 maintained jasmonic acid (JA) homoeostasis via JAZ-mediated negative feedback, balancing defense responses and root development, thereby improving the plant's N acquisition capacity in the roots. Metabolomic and in vitro assays further demonstrated that strain 41R9 displayed strong chemotaxis towards kaempferol, a N-deficiency-induced root exudate, suggesting kaempferol might as a chemical effector for S. yanoikuyae recruitment. These findings advance our understanding of PGPR-driven mechanisms in enhancing crop NUE and highlight the potential of harnessing PGPRs for sustainable agriculture.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15471","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant growth-promoting rhizobacteria (PGPR) are widely recognized for enhancing the absorption of mineral nutrients by crops. While Sphingobium species have been reported as PGPRs, their capacity to improve nitrogen use efficiency (NUE) and the underlying regulatory mechanisms are not yet fully understood. Here, a strain 41R9, isolated from the rhizosphere of N-deficient rapeseed, was found to significantly enhance the growth performance of rapeseed under both low and normal N conditions. Genomic analysis revealed that strain 41R9 was closely related to Sphingobium yanoikuyae. 15N isotope tracer experiments confirmed that inoculation with strain 41R9 significantly boosted N uptake and translocation in rapeseed roots. Transcriptome profiling demonstrated that strain 41R9 directly upregulated N transporter genes (NRT2.5 and SLAH1/3), facilitating efficient N acquisition. Furthermore, strain 41R9 maintained jasmonic acid (JA) homoeostasis via JAZ-mediated negative feedback, balancing defense responses and root development, thereby improving the plant's N acquisition capacity in the roots. Metabolomic and in vitro assays further demonstrated that strain 41R9 displayed strong chemotaxis towards kaempferol, a N-deficiency-induced root exudate, suggesting kaempferol might as a chemical effector for S. yanoikuyae recruitment. These findings advance our understanding of PGPR-driven mechanisms in enhancing crop NUE and highlight the potential of harnessing PGPRs for sustainable agriculture.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.