Yuanyuan Zhang, Haijun Zhao, Haoxin Xiang, Jiashuo Zhang, Lei Wang
{"title":"Seasonal and Diurnal Transcriptome Atlas in Natural Environment Reveals Flowering Time Regulatory Network in Alfalfa.","authors":"Yuanyuan Zhang, Haijun Zhao, Haoxin Xiang, Jiashuo Zhang, Lei Wang","doi":"10.1111/pce.15466","DOIUrl":null,"url":null,"abstract":"<p><p>Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits. However, the underlying molecular basis of flowering time regulation in alfalfa remains unclear. Here we generated a comprehensive full-length, seasonal and diurnal transcriptome atlas comprising 108 samples, including two sets of late- and early-flowering alfalfa across spring, summer and autumn in the natural environment. A total of 389 candidate flowering time-related genes were identified in alfalfa, of which 92 were differentially expressed between early and late flowering plants. Further, we revealed that flowering time regulation genes predominantly identified in spring were mainly involved in vernalization, while genes exclusively identified in summer and autumn were primarily involved in circadian and photoperiodic pathways. Moreover, diurnal dynamics of transcriptomes demonstrate the precise orchestration of various biological processes, including chloroplast development, redox processes, biotic stress responses, growth and development, occurs at designated times throughout the day in accordance with external environmental cues. Together, our results provide a valuable resource for future manipulation of genetic control of flowering time in alfalfa, and demonstrate how plants adapt to diurnal and seasonal environments.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15466","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits. However, the underlying molecular basis of flowering time regulation in alfalfa remains unclear. Here we generated a comprehensive full-length, seasonal and diurnal transcriptome atlas comprising 108 samples, including two sets of late- and early-flowering alfalfa across spring, summer and autumn in the natural environment. A total of 389 candidate flowering time-related genes were identified in alfalfa, of which 92 were differentially expressed between early and late flowering plants. Further, we revealed that flowering time regulation genes predominantly identified in spring were mainly involved in vernalization, while genes exclusively identified in summer and autumn were primarily involved in circadian and photoperiodic pathways. Moreover, diurnal dynamics of transcriptomes demonstrate the precise orchestration of various biological processes, including chloroplast development, redox processes, biotic stress responses, growth and development, occurs at designated times throughout the day in accordance with external environmental cues. Together, our results provide a valuable resource for future manipulation of genetic control of flowering time in alfalfa, and demonstrate how plants adapt to diurnal and seasonal environments.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.