Insights Into the Mechanisms of Tonoplast Dicarboxylate Transporter-Induced Plant Tolerance Against Manganese Toxicity in Peach.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Kaijie Zhu, Xueke Wang, Jingxian Sun, Iqra Noor, Zezheng Du, Mirza Hasanuzzaman, Chuang Wang, Guohuai Li, Junwei Liu
{"title":"Insights Into the Mechanisms of Tonoplast Dicarboxylate Transporter-Induced Plant Tolerance Against Manganese Toxicity in Peach.","authors":"Kaijie Zhu, Xueke Wang, Jingxian Sun, Iqra Noor, Zezheng Du, Mirza Hasanuzzaman, Chuang Wang, Guohuai Li, Junwei Liu","doi":"10.1111/pce.15468","DOIUrl":null,"url":null,"abstract":"<p><p>Manganese (Mn) toxicity poses a severe hazard to plant growth, with organic acids playing a crucial role in detoxifying toxic metals. However, the regulatory mechanisms governing the response of organic acids to Mn toxicity remain largely elusive, particularly in perennial fruit crops. Herein, we investigated the physio-biochemical and transcriptomic responses of peach seedlings to Mn toxicity. Organic acids, especially malate, significantly increased in Mn-treated peach seedlings. Subsequently, malate application markedly mitigated Mn toxicity in peach. Further, we identified a key vacuolar malate transporter, PpTDT, whose expression was dramatically induced by both Mn and malate treatments. PpTDT was localised to the vacuolar membrane. Heterologous expression of PpTDT in yeast restored growth arrest and enhanced Mn tolerance. Overexpression of PpTDT in tobacco, peach leaves and roots enhanced Mn toxicity tolerance, and increased malate and Mn content. Conversely, silencing of PpTDT in peach seedlings exacerbated Mn toxicity, resulting in decreased malate and Mn content. These findings unveil the role of PpTDT in facilitating intracellular chelation of Mn through malate transport, thereby imparting Mn toxicity tolerance in peach. Our study also highlights the potential of malate as an natural compound for improving Mn toxicity tolerance in peach and potentially other fruit crops.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15468","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese (Mn) toxicity poses a severe hazard to plant growth, with organic acids playing a crucial role in detoxifying toxic metals. However, the regulatory mechanisms governing the response of organic acids to Mn toxicity remain largely elusive, particularly in perennial fruit crops. Herein, we investigated the physio-biochemical and transcriptomic responses of peach seedlings to Mn toxicity. Organic acids, especially malate, significantly increased in Mn-treated peach seedlings. Subsequently, malate application markedly mitigated Mn toxicity in peach. Further, we identified a key vacuolar malate transporter, PpTDT, whose expression was dramatically induced by both Mn and malate treatments. PpTDT was localised to the vacuolar membrane. Heterologous expression of PpTDT in yeast restored growth arrest and enhanced Mn tolerance. Overexpression of PpTDT in tobacco, peach leaves and roots enhanced Mn toxicity tolerance, and increased malate and Mn content. Conversely, silencing of PpTDT in peach seedlings exacerbated Mn toxicity, resulting in decreased malate and Mn content. These findings unveil the role of PpTDT in facilitating intracellular chelation of Mn through malate transport, thereby imparting Mn toxicity tolerance in peach. Our study also highlights the potential of malate as an natural compound for improving Mn toxicity tolerance in peach and potentially other fruit crops.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信