P21-Activated Kinase 2 as a Novel Target for Ventricular Tachyarrhythmias Associated with Cardiac Adrenergic Stress and Hypertrophy.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Li, Ting Liu, Yan Wang, Yangpeng Li, Leiying Liu, James Bae, Yu He, Xian Luo, Zhu Liu, Tangting Chen, Xianhong Ou, Dan Zhang, Huan Lan, Juyi Wan, Yan Wei, Fang Zhao, Xin Wang, Tao Li, Christopher L-H Huang, Chunxiang Zhang, Ming Lei, Xiaoqiu Tan
{"title":"P21-Activated Kinase 2 as a Novel Target for Ventricular Tachyarrhythmias Associated with Cardiac Adrenergic Stress and Hypertrophy.","authors":"Tao Li, Ting Liu, Yan Wang, Yangpeng Li, Leiying Liu, James Bae, Yu He, Xian Luo, Zhu Liu, Tangting Chen, Xianhong Ou, Dan Zhang, Huan Lan, Juyi Wan, Yan Wei, Fang Zhao, Xin Wang, Tao Li, Christopher L-H Huang, Chunxiang Zhang, Ming Lei, Xiaoqiu Tan","doi":"10.1002/advs.202411987","DOIUrl":null,"url":null,"abstract":"<p><p>Ventricular arrhythmias associated with cardiac adrenergic stress and hypertrophy pose a significant clinical challenge. We explored ventricular anti-arrhythmic effects of P21-activated kinase 2 (Pak2), comparing in vivo and ex vivo cardiomyocyte-specific Pak2 knockout (Pak2<sup>cko</sup>) or overexpression (Pak2<sup>ctg</sup>) murine models, under conditions of acute adrenergic stress, and hypertrophy following chronic transverse aortic constriction (TAC). Pak2 was downregulated 5 weeks following the latter TAC challenge. Cellular physiological, optical action potential and Ca<sup>2+</sup> transient, measurements, demonstrated increased incidences of triggered ventricular arrhythmias, and prolonged action potential durations (APD) and altered Ca<sup>2+</sup> transients with increases in their beat-to beat variations, in Pak2<sup>cko</sup> hearts. Electron microscopic, proteomic, and molecular biological methods revealed a mitochondrial localization of stress-related proteins on proteomic and phosphoproteomic analyses, particularly in TAC stressed Pak2<sup>cko</sup> mice. They further yielded accompanying evidence for mitochondrial oxidative stress, increased reactive oxygen species (ROS) biosynthesis, reduced mitochondrial complexes I-V, diminished ATP synthesis and elevated NADPH oxidase 4 (NOX4) levels. Pak2 overexpression and the novel Pak2 activator JB2019A ameliorated these effects, enhanced cardiac function and decreased the frequencies of triggered ventricular arrhythmias. Pak2 activation thus protects against ventricular arrhythmia associated with cardiac stress and hypertrophy, through unique mechanisms offering potential novel therapeutic anti-arrhythmic targets.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411987"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411987","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ventricular arrhythmias associated with cardiac adrenergic stress and hypertrophy pose a significant clinical challenge. We explored ventricular anti-arrhythmic effects of P21-activated kinase 2 (Pak2), comparing in vivo and ex vivo cardiomyocyte-specific Pak2 knockout (Pak2cko) or overexpression (Pak2ctg) murine models, under conditions of acute adrenergic stress, and hypertrophy following chronic transverse aortic constriction (TAC). Pak2 was downregulated 5 weeks following the latter TAC challenge. Cellular physiological, optical action potential and Ca2+ transient, measurements, demonstrated increased incidences of triggered ventricular arrhythmias, and prolonged action potential durations (APD) and altered Ca2+ transients with increases in their beat-to beat variations, in Pak2cko hearts. Electron microscopic, proteomic, and molecular biological methods revealed a mitochondrial localization of stress-related proteins on proteomic and phosphoproteomic analyses, particularly in TAC stressed Pak2cko mice. They further yielded accompanying evidence for mitochondrial oxidative stress, increased reactive oxygen species (ROS) biosynthesis, reduced mitochondrial complexes I-V, diminished ATP synthesis and elevated NADPH oxidase 4 (NOX4) levels. Pak2 overexpression and the novel Pak2 activator JB2019A ameliorated these effects, enhanced cardiac function and decreased the frequencies of triggered ventricular arrhythmias. Pak2 activation thus protects against ventricular arrhythmia associated with cardiac stress and hypertrophy, through unique mechanisms offering potential novel therapeutic anti-arrhythmic targets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信