Nanoscale Metal-Organic Frameworks: An Emerging Versatile Tool for Next-Generation Photodynamic Therapy.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gopal Singh Attar, Vandana Bhalla, Manoj Kumar
{"title":"Nanoscale Metal-Organic Frameworks: An Emerging Versatile Tool for Next-Generation Photodynamic Therapy.","authors":"Gopal Singh Attar, Vandana Bhalla, Manoj Kumar","doi":"10.1002/asia.202500079","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy has emerged as a potent strategy for treatment of cancer due to its non-invasiveness, minimal toxicity, high spatial selectivity, and potential for combination therapies. However, self-aggregation of photosensitizers, tumour hypoxia and low penetration depth of excitation photons remain prominent challenges towards its clinical application. Nanoscale metal-organic frameworks have emerged as one of the most promising materials due to their tunable composition which allows the adjustment of optical and chemical properties by changing the metal ions or organic linkers. Due to their high porosity, they serve as carriers for photosensitizers and demonstrate high tumour accumulation rates, target specificity, and penetration depth with enhanced permeability and retention effect. This review aims to explore recent developments in nanoscale metal-organic frameworks focusing on the design strategies to enhance their effectiveness in tumour microenvironment. Specifically, we have examined the approaches to address challenges posed by hypoxic tumour environment and tissue penetration depth of the various light sources. Furthermore, this review provides insights into the targeting strategies that improve the overall efficacy through stimulus-activated release and sub-cellular internalization of photosensitizers. Finally, we discussed the on-going challenges and some future directions for harnessing their full potential as therapeutic agents for effective outcome of photodynamic therapy.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202500079"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500079","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy has emerged as a potent strategy for treatment of cancer due to its non-invasiveness, minimal toxicity, high spatial selectivity, and potential for combination therapies. However, self-aggregation of photosensitizers, tumour hypoxia and low penetration depth of excitation photons remain prominent challenges towards its clinical application. Nanoscale metal-organic frameworks have emerged as one of the most promising materials due to their tunable composition which allows the adjustment of optical and chemical properties by changing the metal ions or organic linkers. Due to their high porosity, they serve as carriers for photosensitizers and demonstrate high tumour accumulation rates, target specificity, and penetration depth with enhanced permeability and retention effect. This review aims to explore recent developments in nanoscale metal-organic frameworks focusing on the design strategies to enhance their effectiveness in tumour microenvironment. Specifically, we have examined the approaches to address challenges posed by hypoxic tumour environment and tissue penetration depth of the various light sources. Furthermore, this review provides insights into the targeting strategies that improve the overall efficacy through stimulus-activated release and sub-cellular internalization of photosensitizers. Finally, we discussed the on-going challenges and some future directions for harnessing their full potential as therapeutic agents for effective outcome of photodynamic therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信