Chuan Yao Zhai, AnQuan Ma, Wenhao Wang, TianTian Zhu, Liu Huanyu, WeiPeng Lan, TianJiao Yu, Jing Lan, ZhiFeng Wang
{"title":"In Vivo and In Vitro Study of a Multifunctional SF/nHAp Corrosion-Resistant Bio-Coating Prepared on MAO Magnesium Alloy via Ultrasonic Spraying.","authors":"Chuan Yao Zhai, AnQuan Ma, Wenhao Wang, TianTian Zhu, Liu Huanyu, WeiPeng Lan, TianJiao Yu, Jing Lan, ZhiFeng Wang","doi":"10.1021/acsbiomaterials.4c02405","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium alloys are often used in bone repair surgeries due to their biodegradability and excellent elastic modulus, making them a promising alternative to traditional nondegradable implants like titanium alloys. However, their rapid degradation rate limits their use as implants in the body. To enhance the corrosion resistance and bioactivity of magnesium alloys, we applied an ultrasonic spray coating on microarc oxidized (MAO) AZ31 magnesium alloy, using a mixture of silk fibroin (SF) and nanohydroxyapatite (nHAp). This SF/nHAp composite embeds directly into the micropores on the MAO-treated surface without additional physical or chemical treatment, forming a stable interlocked coating structure. The effects of different spray parameters on coating adhesion and interface characteristics were investigated, leading to the development of a corrosion-resistant and highly biocompatible composite coating. Further biological evaluations were conducted through subcutaneous implantation, assessing the in vivo degradation of the samples and the surrounding tissue response from multiple perspectives. A novel concept of in vivo tissue-reactive coatings was proposed, suggesting that highly biocompatible coating materials, in the early stages postimplantation, enable surrounding fibrous tissues to closely adhere to the surface, thereby slowing material degradation. As a result, the highly bioactive MAO-SF/nHAp coating significantly enhances the corrosion resistance of magnesium alloys, reduces hydrogen evolution, promotes regeneration of surrounding tissues, and minimizes postimplant inflammation. This approach offers a new strategy to improve the biocompatibility and corrosion resistance of magnesium alloys in vivo, suggesting that the overall evaluation of biodegradable magnesium alloys should focus more on assessing in-body corrosion.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02405","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium alloys are often used in bone repair surgeries due to their biodegradability and excellent elastic modulus, making them a promising alternative to traditional nondegradable implants like titanium alloys. However, their rapid degradation rate limits their use as implants in the body. To enhance the corrosion resistance and bioactivity of magnesium alloys, we applied an ultrasonic spray coating on microarc oxidized (MAO) AZ31 magnesium alloy, using a mixture of silk fibroin (SF) and nanohydroxyapatite (nHAp). This SF/nHAp composite embeds directly into the micropores on the MAO-treated surface without additional physical or chemical treatment, forming a stable interlocked coating structure. The effects of different spray parameters on coating adhesion and interface characteristics were investigated, leading to the development of a corrosion-resistant and highly biocompatible composite coating. Further biological evaluations were conducted through subcutaneous implantation, assessing the in vivo degradation of the samples and the surrounding tissue response from multiple perspectives. A novel concept of in vivo tissue-reactive coatings was proposed, suggesting that highly biocompatible coating materials, in the early stages postimplantation, enable surrounding fibrous tissues to closely adhere to the surface, thereby slowing material degradation. As a result, the highly bioactive MAO-SF/nHAp coating significantly enhances the corrosion resistance of magnesium alloys, reduces hydrogen evolution, promotes regeneration of surrounding tissues, and minimizes postimplant inflammation. This approach offers a new strategy to improve the biocompatibility and corrosion resistance of magnesium alloys in vivo, suggesting that the overall evaluation of biodegradable magnesium alloys should focus more on assessing in-body corrosion.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture