3D-Printed Flexible and Integrable Asymmetric Microsupercapacitors with High-Areal-Energy-Density.

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-26 Epub Date: 2025-03-11 DOI:10.1021/acsami.5c01164
Lihui Chen, Pinjing Yao, Wangyang Li, Qinghuang Huang, Jixi Chen, Huagui Zhang, Xinghui Wang
{"title":"3D-Printed Flexible and Integrable Asymmetric Microsupercapacitors with High-Areal-Energy-Density.","authors":"Lihui Chen, Pinjing Yao, Wangyang Li, Qinghuang Huang, Jixi Chen, Huagui Zhang, Xinghui Wang","doi":"10.1021/acsami.5c01164","DOIUrl":null,"url":null,"abstract":"<p><p>3D-Printed quasi-solid-state microsupercapacitors (MSCs) present immense potential as next-generation miniature energy storage devices, offering superior power density, excellent flexibility, and feasible on-chip integration. However, the challenges posed by formulating 3D printing inks with high-performance and ensuring efficient ionic transport in thick electrodes hinder the development of advanced MSCs with high areal energy density. Herein, we report 3D-printed ultrahigh-energy-density asymmetric MSCs with latticed electrodes, fabricated using Ni-Co-S/Co(OH)<sub>2</sub>/carbon nanotubes/reduced graphene oxide (Ni-Co-S/Co(OH)<sub>2</sub>/CNTs/rGO) positive electrode ink and activated carbon (AC)/CNTs negative electrode ink. The latticed electrodes feature abundant hierarchical pores and an interconnected conductive network formed by coupling CNTs and rGO (or AC), enabling efficient ion and electron transport even in thick electrodes. The 3D-printed asymmetric MSCs with three-layer latticed electrodes deliver an impressive areal energy density of 543 μWh cm<sup>-2</sup> and a high areal capacitance of 1.74 F cm<sup>-2</sup> at 1 mA cm<sup>-2</sup>, nearly double the performance of planar electrodes under identical conditions. Furthermore, the device demonstrates excellent cycling stability (80% retention of the initial capacitance after 5000 cycles). This work advances the field of 3D printing for energy storage applications and provides design principles for developing integrated flexible MSCs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"18666-18676"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01164","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

3D-Printed quasi-solid-state microsupercapacitors (MSCs) present immense potential as next-generation miniature energy storage devices, offering superior power density, excellent flexibility, and feasible on-chip integration. However, the challenges posed by formulating 3D printing inks with high-performance and ensuring efficient ionic transport in thick electrodes hinder the development of advanced MSCs with high areal energy density. Herein, we report 3D-printed ultrahigh-energy-density asymmetric MSCs with latticed electrodes, fabricated using Ni-Co-S/Co(OH)2/carbon nanotubes/reduced graphene oxide (Ni-Co-S/Co(OH)2/CNTs/rGO) positive electrode ink and activated carbon (AC)/CNTs negative electrode ink. The latticed electrodes feature abundant hierarchical pores and an interconnected conductive network formed by coupling CNTs and rGO (or AC), enabling efficient ion and electron transport even in thick electrodes. The 3D-printed asymmetric MSCs with three-layer latticed electrodes deliver an impressive areal energy density of 543 μWh cm-2 and a high areal capacitance of 1.74 F cm-2 at 1 mA cm-2, nearly double the performance of planar electrodes under identical conditions. Furthermore, the device demonstrates excellent cycling stability (80% retention of the initial capacitance after 5000 cycles). This work advances the field of 3D printing for energy storage applications and provides design principles for developing integrated flexible MSCs.

具有高面能量密度的3d打印柔性可积非对称微超级电容器。
3d打印准固态微超级电容器(MSCs)作为下一代微型储能器件,具有卓越的功率密度、优异的灵活性和可行的片上集成,具有巨大的潜力。然而,制定高性能的3D打印油墨和确保厚电极中有效的离子传输所带来的挑战阻碍了具有高面能密度的先进MSCs的发展。本文采用Ni-Co-S/Co(OH)2/碳纳米管/还原氧化石墨烯(Ni-Co-S/Co(OH)2/CNTs/rGO)正极墨水和活性炭(AC)/碳纳米管负极墨水制备了具有晶格电极的3d打印超高能量密度非对称MSCs。晶格电极具有丰富的分层孔隙和通过耦合CNTs和rGO(或AC)形成的相互连接的导电网络,即使在厚电极中也能实现高效的离子和电子传输。具有三层晶格电极的3d打印非对称MSCs的面能量密度为543 μWh cm-2,在1 mA cm-2时的面电容高达1.74 F cm-2,几乎是同等条件下平面电极的两倍。此外,该器件表现出优异的循环稳定性(5000次循环后初始电容保持80%)。这项工作推动了3D打印储能应用领域的发展,并为开发集成柔性MSCs提供了设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信