Atmospheric rivers in Antarctica

Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Rebecca Baiman, J. E. Barrett, Léonard Barthelemy, Burcu Boza, Deniz Bozkurt, Mathieu Casado, Anastasiia Chyhareva, Kyle R. Clem, Francis Codron, Rajashree Tri Datta, Claudio Durán-Alarcón, Diana Francis, Andrew O. Hoffman, Marlen Kolbe, Svitlana Krakovska, Gabrielle Linscott, Michelle L. Maclennan, Kyle S. Mattingly, Ye Mu, Benjamin Pohl, Christophe Leroy-Dos Santos, Christine A. Shields, Emir Toker, Andrew C. Winters, Ziqi Yin, Xun Zou, Chen Zhang, Zhenhai Zhang
{"title":"Atmospheric rivers in Antarctica","authors":"Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Rebecca Baiman, J. E. Barrett, Léonard Barthelemy, Burcu Boza, Deniz Bozkurt, Mathieu Casado, Anastasiia Chyhareva, Kyle R. Clem, Francis Codron, Rajashree Tri Datta, Claudio Durán-Alarcón, Diana Francis, Andrew O. Hoffman, Marlen Kolbe, Svitlana Krakovska, Gabrielle Linscott, Michelle L. Maclennan, Kyle S. Mattingly, Ye Mu, Benjamin Pohl, Christophe Leroy-Dos Santos, Christine A. Shields, Emir Toker, Andrew C. Winters, Ziqi Yin, Xun Zou, Chen Zhang, Zhenhai Zhang","doi":"10.1038/s43017-024-00638-7","DOIUrl":null,"url":null,"abstract":"Antarctic atmospheric rivers (ARs) are a form of extreme weather that transport heat and moisture from the Southern Hemisphere subtropics and/or mid-latitudes to the Antarctic continent. Present-day AR events generally have a positive influence on the Antarctic ice-sheet mass balance by producing heavy snowfall, yet they also cause melt of sea ice and coastal ice sheet areas, as well as ice shelf destabilization. In this Review, we explore the atmospheric dynamics and impacts of Antarctic ARs over their life cycle to better understand their net contributions to ice-sheet mass balance. ARs occur in high-amplitude pressure couplets, and those strong enough to reach the Antarctic are often formed within Rossby waves initiated by tropical convection. Antarctic ARs are rare events (~3 days per year per location) but have been responsible for 50–70% of extreme snowfall events in East Antarctica since the 1980s. However, they can also trigger extensive surface melting events, such as the final ice shelf collapse of Larsen A in 1995 and Larsen B in 2002. Climate change will likely cause stronger ARs as anthropogenic warming increases atmospheric water vapour. Future research must determine how these climate change impacts will alter the relationship among Antarctic ARs, net ice-sheet mass balance and future sea-level rise. Atmospheric rivers provide the majority of water vapour transport to the high latitudes. This Review summarizes Antarctic atmospheric river dynamics and climatology and discusses their impacts on the mass balance of the Antarctic ice sheet.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"178-192"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-024-00638-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antarctic atmospheric rivers (ARs) are a form of extreme weather that transport heat and moisture from the Southern Hemisphere subtropics and/or mid-latitudes to the Antarctic continent. Present-day AR events generally have a positive influence on the Antarctic ice-sheet mass balance by producing heavy snowfall, yet they also cause melt of sea ice and coastal ice sheet areas, as well as ice shelf destabilization. In this Review, we explore the atmospheric dynamics and impacts of Antarctic ARs over their life cycle to better understand their net contributions to ice-sheet mass balance. ARs occur in high-amplitude pressure couplets, and those strong enough to reach the Antarctic are often formed within Rossby waves initiated by tropical convection. Antarctic ARs are rare events (~3 days per year per location) but have been responsible for 50–70% of extreme snowfall events in East Antarctica since the 1980s. However, they can also trigger extensive surface melting events, such as the final ice shelf collapse of Larsen A in 1995 and Larsen B in 2002. Climate change will likely cause stronger ARs as anthropogenic warming increases atmospheric water vapour. Future research must determine how these climate change impacts will alter the relationship among Antarctic ARs, net ice-sheet mass balance and future sea-level rise. Atmospheric rivers provide the majority of water vapour transport to the high latitudes. This Review summarizes Antarctic atmospheric river dynamics and climatology and discusses their impacts on the mass balance of the Antarctic ice sheet.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信