Sanne M. Moedt, Kirsten S. Christoffersen, Andreas Westergaard-Nielsen, Kenneth T. Martinsen, Ada Pastor, Niels Jákup Korsgaard, Tenna Riis
{"title":"Drivers of Epilithic Biofilms in Greenland Streams: The Role of Nutrients, Temperature and Catchment Slope Across a Climate Gradient","authors":"Sanne M. Moedt, Kirsten S. Christoffersen, Andreas Westergaard-Nielsen, Kenneth T. Martinsen, Ada Pastor, Niels Jákup Korsgaard, Tenna Riis","doi":"10.1111/1758-2229.70074","DOIUrl":null,"url":null,"abstract":"<p>The Arctic is warming faster than the global average, making it critical to understand how this affects ecological structure and function in streams, which are key Arctic ecosystems. Microbial biofilms are crucial for primary production and decomposition in Arctic streams and support higher trophic levels. However, comprehensive studies across Arctic regions, and in particular within Greenland, are scarce. This study analysed total biomass, autotrophic biomass (chlorophyll <i>a</i>), and the general structure of major autotrophic groups in stream epilithic biofilms across Greenland's subarctic, Low Arctic, and High Arctic regions. Our aim was to identify primary environmental drivers of biofilm across these climate regions. We observed large environmental variation differences in biofilm chlorophyll <i>a</i> concentrations and total biomass across the regions. Cyanobacteria, diatoms, and green algae were present in all regions, with cyanobacteria dominating High Arctic streams. Phosphate and water temperature primarily drove autotrophic biofilm abundance measured as chlorophyll <i>a</i> concentration, while catchment slope and nitrate concentrations influenced total biofilm biomass, with relationships varying by region. Our results suggest increased biofilm accumulation in Greenland streams under projected climate warming, which likely will alter trophic food webs and biogeochemical cycling, with region-specific responses expected.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70074","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Arctic is warming faster than the global average, making it critical to understand how this affects ecological structure and function in streams, which are key Arctic ecosystems. Microbial biofilms are crucial for primary production and decomposition in Arctic streams and support higher trophic levels. However, comprehensive studies across Arctic regions, and in particular within Greenland, are scarce. This study analysed total biomass, autotrophic biomass (chlorophyll a), and the general structure of major autotrophic groups in stream epilithic biofilms across Greenland's subarctic, Low Arctic, and High Arctic regions. Our aim was to identify primary environmental drivers of biofilm across these climate regions. We observed large environmental variation differences in biofilm chlorophyll a concentrations and total biomass across the regions. Cyanobacteria, diatoms, and green algae were present in all regions, with cyanobacteria dominating High Arctic streams. Phosphate and water temperature primarily drove autotrophic biofilm abundance measured as chlorophyll a concentration, while catchment slope and nitrate concentrations influenced total biofilm biomass, with relationships varying by region. Our results suggest increased biofilm accumulation in Greenland streams under projected climate warming, which likely will alter trophic food webs and biogeochemical cycling, with region-specific responses expected.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.