In Vitro Neuroprotective Effect Evaluation of Donepezil-Loaded PLGA Nanoparticles-Embedded PVA/PEG Nanofibers on SH-SY5Y Cells and AP-APP Plasmid Related Alzheimer Cell Line Model

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ece Guler, Humeyra Betul Yekeler, Burcu Uner, Murat Dogan, Asima Asghar, Fakhera Ikram, Yusufhan Yazir, Oguzhan Gunduz, Deepak M Kalaskar, Muhammet Emin Cam
{"title":"In Vitro Neuroprotective Effect Evaluation of Donepezil-Loaded PLGA Nanoparticles-Embedded PVA/PEG Nanofibers on SH-SY5Y Cells and AP-APP Plasmid Related Alzheimer Cell Line Model","authors":"Ece Guler,&nbsp;Humeyra Betul Yekeler,&nbsp;Burcu Uner,&nbsp;Murat Dogan,&nbsp;Asima Asghar,&nbsp;Fakhera Ikram,&nbsp;Yusufhan Yazir,&nbsp;Oguzhan Gunduz,&nbsp;Deepak M Kalaskar,&nbsp;Muhammet Emin Cam","doi":"10.1002/mame.202400160","DOIUrl":null,"url":null,"abstract":"<p>Recently developed nanoparticles and nanofibers present new brain-specific treatment strategies, especially for Alzheimer's disease treatment. In this study, donepezil (DO)-loaded PLGA nanoparticles (DNP) are embedded in PVA/PEG nanofibers (DNPF) produced by pressurized gyration for sublingual administration. SEM images showed produced drug-loaded and pure nanofibers, which have sizes between 978 and 1123 nm, demonstrated beadless morphology and homogeneous distribution. FT-IR, XRD, and DSC results proved the produced nanoparticles and fibers to consist of the DO and other polymers. The in vitro drug release test presented that the release profile of DO is completed at the end of the 18th day. It is released by the first order kinetic model. DNPF has an ultra-fast release profile via its disintegration within 2 sec, which proved itself to be suitable for the administration sublingually. All samples presented above ≈90% cell viability via their non-toxic natures on SH-SY5Y human neuroblastoma cells by using Alamar blue assay. The anti-Alzheimer effects of DO, DNP, and DNPF are evaluated on the Aβ<sub>1−42</sub>-induced SH-SY5Y cells at 1, 5, and 10 µM as treatment groups. The 1 µM dosage exhibited the most significant neuroprotective effects, which showed enhanced cellular uptake and superior modulation of Alzheimer's-related proteins, including tau and Aβ.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently developed nanoparticles and nanofibers present new brain-specific treatment strategies, especially for Alzheimer's disease treatment. In this study, donepezil (DO)-loaded PLGA nanoparticles (DNP) are embedded in PVA/PEG nanofibers (DNPF) produced by pressurized gyration for sublingual administration. SEM images showed produced drug-loaded and pure nanofibers, which have sizes between 978 and 1123 nm, demonstrated beadless morphology and homogeneous distribution. FT-IR, XRD, and DSC results proved the produced nanoparticles and fibers to consist of the DO and other polymers. The in vitro drug release test presented that the release profile of DO is completed at the end of the 18th day. It is released by the first order kinetic model. DNPF has an ultra-fast release profile via its disintegration within 2 sec, which proved itself to be suitable for the administration sublingually. All samples presented above ≈90% cell viability via their non-toxic natures on SH-SY5Y human neuroblastoma cells by using Alamar blue assay. The anti-Alzheimer effects of DO, DNP, and DNPF are evaluated on the Aβ1−42-induced SH-SY5Y cells at 1, 5, and 10 µM as treatment groups. The 1 µM dosage exhibited the most significant neuroprotective effects, which showed enhanced cellular uptake and superior modulation of Alzheimer's-related proteins, including tau and Aβ.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信