Mohammadreza Shahbazi, Mehdi Najafi, Mohammad Fatehi Marji, Abolfazl Abdollahipour
{"title":"Thermo-Mechanical Analysis of Crack Propagation Process in Heterogeneous Brittle Coal and Its Effects on the UCG Cavity Growth Rate","authors":"Mohammadreza Shahbazi, Mehdi Najafi, Mohammad Fatehi Marji, Abolfazl Abdollahipour","doi":"10.1002/ese3.2002","DOIUrl":null,"url":null,"abstract":"<p>The mechanism of cavity growth in a UCG process is mainly dependent on the presence of fractures and microcracks in the coal seam. In this study, the rate of cavity growth and the crack propagation mechanism in brittle coal samples under high thermal conditions are investigated using a two-dimensional particle flow code (PFC2D). Coal samples with different cleats' orientation under thermal environments are numerically simulated. The numerical modeling results show that the induced thermal stress is one-third of the coal sample failure stress. This is due to the increase in particles' volume, the change in normal force between the particles' bonds, and the changes in thermal and mechanical parameters resulting from the applied source temperature, which breaks the bond around the particle. The effects of heat and heterogeneity on the strength of coal samples are also studied under different temperatures ranging from 50°C to 900°C. The results showed that the presence of high-strength coal seams reduces the formation and propagation of heat-induced cracks, consequently reducing the cavity growth rate. The soft coal sample has more plasticity, and the cavity growth rate in the soft coal is more than that of the hard coal. The elasticity modulus and uniaxial compressive strength decrease with the increase of the source temperature and the sample begins to deform in a plastic mode. Also, increasing temperature causes an exponential increase in thermal stress. From the fracture mechanics point of view, knowing the conditions and the mechanism of pre-existing crack propagation in the coal seam can lead to a correct understanding of cavity growth during the UCG process.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1062-1078"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanism of cavity growth in a UCG process is mainly dependent on the presence of fractures and microcracks in the coal seam. In this study, the rate of cavity growth and the crack propagation mechanism in brittle coal samples under high thermal conditions are investigated using a two-dimensional particle flow code (PFC2D). Coal samples with different cleats' orientation under thermal environments are numerically simulated. The numerical modeling results show that the induced thermal stress is one-third of the coal sample failure stress. This is due to the increase in particles' volume, the change in normal force between the particles' bonds, and the changes in thermal and mechanical parameters resulting from the applied source temperature, which breaks the bond around the particle. The effects of heat and heterogeneity on the strength of coal samples are also studied under different temperatures ranging from 50°C to 900°C. The results showed that the presence of high-strength coal seams reduces the formation and propagation of heat-induced cracks, consequently reducing the cavity growth rate. The soft coal sample has more plasticity, and the cavity growth rate in the soft coal is more than that of the hard coal. The elasticity modulus and uniaxial compressive strength decrease with the increase of the source temperature and the sample begins to deform in a plastic mode. Also, increasing temperature causes an exponential increase in thermal stress. From the fracture mechanics point of view, knowing the conditions and the mechanism of pre-existing crack propagation in the coal seam can lead to a correct understanding of cavity growth during the UCG process.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.