Oriented grating is usually employed in visual science experiments as a prominent property of neurons in the visual cortices. Previous studies have shown that the study of mouse vision can make a significant contribution to the field of neuroscience research, and also the local field potential (LFP) analysis could contain more information and give us a better view of brain function.
In this research, cross-frequency coupling is employed to assess the grating orientation perception in V1 and lateromedial (LM) of 10 mice. The experimental data were collected using chronically implanted multielectrode arrays, involving area V1 recording of five mice and area LM recording of five mice separately, performing a passive visual task. Two criteria known as phase–amplitude coupling (PAC) and amplitude–amplitude coupling (AAC) were exploited to analyze the characteristics of cross-frequency coupling of LFP signals in the experiment consisting of first-order and second-order drifting sinusoidal grating stimuli with different orientations.
It was found that in area LM the correlation between phase of lower than 8 Hz band signal and amplitude of above 100 Hz band signal can be significantly different for orientations and stimulus conditions simultaneously. In area V1, this difference was observed in amplitude correlation between 12 and 30 Hz and more than 70 Hz subbands.
In conclusion, PAC and AAC can be proper features in orientation perception detection. Our results suggest that in both areas, the significant role of high-band and low-band oscillations of LFPs discloses the reliability of these bands and generally LFP signals in mice visual perception.