Asim Ahmad, Om Prakash, L. S. Brar, Kashif Irshad, S. M. Mozammil Hasnain, Prabhu Paramasivam, Abinet Gosaye Ayanie
{"title":"Effect of Wall, Roof, and Window-to-Wall Ratio on the Cooling and Heating Load of a Building in India","authors":"Asim Ahmad, Om Prakash, L. S. Brar, Kashif Irshad, S. M. Mozammil Hasnain, Prabhu Paramasivam, Abinet Gosaye Ayanie","doi":"10.1002/ese3.2066","DOIUrl":null,"url":null,"abstract":"<p>This study examines the impact of various combinations of walls, roofs, and window-to-wall ratios (WWRs) on the cooling and heating loads of residential buildings in India's composite climatic zone. Utilizing EnergyPlus and eQuest simulations, the thermal performance of three building types is analyzed across 32 cases involving two types of walls (W1, W2), roofs (R1, R2), and WWRs of 10%, 20%, 30%, and 40%. The results indicate that Case 29 (W2 R2 N2 WWR1), characterized by a north-facing orientation, square-shaped design, and a 10% WWR, achieves the lowest cooling and heating loads among all configurations. Specifically, in Building 1, this configuration reduces cooling loads by 26.0% (from 204 to 151 kBTU/h) and heating loads by 28.6% (from 224 to 160 kBTU/h) compared to the highest load scenario, Case 4 (W1 R1 N1 WWR4, west-facing orientation, square-shaped design, and 40% WWR). Similar trends are observed for Buildings 2 and 3. These findings underscore the critical role of optimizing building envelope parameters, particularly orientation, shape, and WWR, in achieving significant energy savings. The insights provided by this study can aid architects, engineers, and policymakers in designing energy-efficient residential buildings.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1255-1279"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2066","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the impact of various combinations of walls, roofs, and window-to-wall ratios (WWRs) on the cooling and heating loads of residential buildings in India's composite climatic zone. Utilizing EnergyPlus and eQuest simulations, the thermal performance of three building types is analyzed across 32 cases involving two types of walls (W1, W2), roofs (R1, R2), and WWRs of 10%, 20%, 30%, and 40%. The results indicate that Case 29 (W2 R2 N2 WWR1), characterized by a north-facing orientation, square-shaped design, and a 10% WWR, achieves the lowest cooling and heating loads among all configurations. Specifically, in Building 1, this configuration reduces cooling loads by 26.0% (from 204 to 151 kBTU/h) and heating loads by 28.6% (from 224 to 160 kBTU/h) compared to the highest load scenario, Case 4 (W1 R1 N1 WWR4, west-facing orientation, square-shaped design, and 40% WWR). Similar trends are observed for Buildings 2 and 3. These findings underscore the critical role of optimizing building envelope parameters, particularly orientation, shape, and WWR, in achieving significant energy savings. The insights provided by this study can aid architects, engineers, and policymakers in designing energy-efficient residential buildings.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.