Eco-Friendly Extraction and Utilization of Agro Crop Wastes Based Natural Dye for Textile Dyeing

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Nimra Amin, Fazal-ur- Rehman, Shahid Adeel, Muhammad Ibrahim, Rony Mia
{"title":"Eco-Friendly Extraction and Utilization of Agro Crop Wastes Based Natural Dye for Textile Dyeing","authors":"Nimra Amin,&nbsp;Fazal-ur- Rehman,&nbsp;Shahid Adeel,&nbsp;Muhammad Ibrahim,&nbsp;Rony Mia","doi":"10.1002/ese3.2067","DOIUrl":null,"url":null,"abstract":"<p>The incorporation of waste plant residues into practical applications, particularly as a sustainable source of green dyes in textiles, is increasingly recommended by the global community. This research investigates the potential of Rangoon creeper flowers and madder roots for silk dyeing through environmentally friendly methodologies. Therefore, extraction procedures were conducted in suitable mediums and applied to the fabric before and after microwave (MW) treatment for durations of up to 10 min. Similarly, response surface methodology was employed to assess the significance of various dyeing parameters, which influence shade development and enhance colorfastness. The results indicate that subjecting acidic binary extracts of Rangoon creeper flowers and madder roots, along with silk fabric, to 6 min of radiation at 700 W is an effective condition for achieving colorfast shades, particularly when applied before and after mordanting with Al, Fe salts, and tannic acid single and their binary solution as eco-chemical agents. The highest color strength (K/S = 15.0) was obtained using an acidic extract after MW treatment. Hence, evaluation based on standard methods such as ISO protocols for lightfastness, wash fastness, and rub fastness demonstrates that employing selected shades produced under environmentally friendly conditions is both time and energy-efficient, yielding stable colorfast hues rated from good to excellent. This study suggests that utilizing microwave treatment in addition to statistical methodologies like the central composite design for exploring novel dye-yielding plants, coupled with eco-mordanting techniques, holds promise for obtaining desirable colorfast shades.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1280-1291"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of waste plant residues into practical applications, particularly as a sustainable source of green dyes in textiles, is increasingly recommended by the global community. This research investigates the potential of Rangoon creeper flowers and madder roots for silk dyeing through environmentally friendly methodologies. Therefore, extraction procedures were conducted in suitable mediums and applied to the fabric before and after microwave (MW) treatment for durations of up to 10 min. Similarly, response surface methodology was employed to assess the significance of various dyeing parameters, which influence shade development and enhance colorfastness. The results indicate that subjecting acidic binary extracts of Rangoon creeper flowers and madder roots, along with silk fabric, to 6 min of radiation at 700 W is an effective condition for achieving colorfast shades, particularly when applied before and after mordanting with Al, Fe salts, and tannic acid single and their binary solution as eco-chemical agents. The highest color strength (K/S = 15.0) was obtained using an acidic extract after MW treatment. Hence, evaluation based on standard methods such as ISO protocols for lightfastness, wash fastness, and rub fastness demonstrates that employing selected shades produced under environmentally friendly conditions is both time and energy-efficient, yielding stable colorfast hues rated from good to excellent. This study suggests that utilizing microwave treatment in addition to statistical methodologies like the central composite design for exploring novel dye-yielding plants, coupled with eco-mordanting techniques, holds promise for obtaining desirable colorfast shades.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信